Please wait a minute...
Advanced Search
现代图书情报技术  2012, Vol. Issue (10): 1-7    DOI: 10.11925/infotech.1003-3513.2012.10.01
  数字图书馆 本期目录 | 过刊浏览 | 高级检索 |
个性化服务中关联数据驱动的用户语义建模框架
牛亚真1,2, 祝忠明1
1. 中国科学院国家科学图书馆兰州分馆 兰州 730000;
2. 中国科学院大学 北京 100049
A Linked Data-driven Semantic User Modeling Framework for Personalization Service
Niu Yazhen1,2, Zhu Zhongming1
1. The Lanzhou Branch of National Science Library, Chinese Academy of Sciences, Lanzhou 730000, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(927 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 基于关联数据的应用框架,提出一种构建用户语义模型的基本框架,设计用户语义模型,并对所提出的框架进行详细的分析。该框架主要包括两个方面:从LOD云中发现并获取与用户相关的关联数据的方法和策略;利用获取的关联数据构建用户模型的基本过程,包括概念映射、同一性解析、数据融合和模型生成几个步骤。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
牛亚真
祝忠明
关键词 关联数据LOD用户模型用户建模语义网概念映射数据融合    
Abstract:Based on the framework of Linked Data application, this paper prensents a semantic user modeling framework, and designs a semantic user model in the context of semantic Web, then analyzes the framework in detail. This framework mainly consists of two parts: firstly, it discusses the methods and strategies for discovering and acquiring users data from the LOD cloud; secondly, it introduces the processes for constructing a user model using these data, which includes such steps as concept mapping, identity resolution, data fusion and model generation.
Key wordsLinked data    LOD    User model    User modeling    Semantic Web    Concept mapping    Data fusion
收稿日期: 2012-09-11     
: 

G250.76

 
基金资助:

本文系中国科学院西部之光联合学者项目“机构知识库的语义增强方法与技术研究”的研究成果之一。

通讯作者: 牛亚真     E-mail: niuyazhen10@163.com
引用本文:   
牛亚真, 祝忠明. 个性化服务中关联数据驱动的用户语义建模框架[J]. 现代图书情报技术, 2012, (10): 1-7.
Niu Yazhen, Zhu Zhongming. A Linked Data-driven Semantic User Modeling Framework for Personalization Service. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2012.10.01.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2012.10.01
[1] Berners-Lee T. Design Issues: Linked Data[EB/OL]. [2012-08-05]. http://www.w3.org/DesignIssues/LinkedData.html.
[2] Sosnovsky S, Dicheva D. Ontological Technologies for User Modelling[J]. International Journal of Metadata, Semantics and Ontologies, 2010, 5(1):32-71.
[3] Razmerita L, Angehrn A, Maedche A. Ontology-based User Modeling for Knowledge Management Systems[C]. In: Proceedings of the 9th International Conference on User Modeling (UM’03). Berlin,Heidelberg: Springer-Verlag, 2003: 213-217.
[4] Niederée C, Stewart A, Mehta B, et al. A Multi-Dimensional, Unified User Model for Cross-System Personalization[EB/OL]. [2012-08-05]. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.94.9261&rep=rep1&type=pdf.
[5] Heckmann D, Schwartz T, Brandherm B et al. Gumo-the General User Model Ontology[C]. In: Proceedings of the 10th International Conference on User Modeling 2005,Edinburgh, Scotland, UK.Berlin: Springer-Verlag,2005:428-432.
[6] Dolog P, Schäfer M. A Framework for Browsing, Manipulating and Maintaining Interoperable Learner Profiles[C].In: Proceedings of the 10th International Conference on User Modelling 2005, Edinburgh, Scotland, UK. Berlin, Heidelberg: Sping-Verlag, 2005:397-401.
[7] Cyganiak R, Jentzsch A. The Linking Open Data Cloud Diagram[EB/OL]. [2012-08-05]. http://richard.cyganiak.de/2007/10/lod/.
[8] Latif A, Afzal M T, Helic D, et al. Discovery and Construction of Authors’ Profile from Linked Data (A Case Study for Open Digital Journal)[C]. In: Proceedings of LDOW2010, Releigh, USA. 2010.
[9] 刘媛媛, 李春旺, 黄永文. 基于 LOD 的关联参考服务构建研究[J]. 现代图书情报技术, 2011 (6): 66-71. (Liu Yuanyuan, Li Chunwang, Huang Yongwen. Study on Building the Service of Relevance Reference Based on LOD[J]. New Technology of Library and Information Service, 2011(6): 66-71.)
[10] 沈志宏, 张晓林. 关联数据及其应用现状综述[J]. 现代图书情报技术, 2010(11):1-9. (Shen Zhihong, Zhang Xiaolin. Linked Data and Its Applications: An Overview[J]. New Technology of Library and Information Service, 2010(11):1-9.)
[11] Middleton S E, De Roure D C, Shadbolt N R. Capturing Knowledge of User Preferences: Ontologies in Recommender Systems[C]. In: Proceedings of the 1st International Conference on Knowledge Capture (K-CAP’01). New York: ACM, 2001: 100-107.
[12] Middleton S E, Shadbolt N R, De Roure D C. Capturing Interest Through Inference and Visualization: Ontological User Profiling in Rrecommender Systems[C]. In: Proceedings of the 2nd International Conference on Knowledge Capture (K-CAP’03). New York: ACM, 2003: 62-69.
[13] U-Sem in ImREAL[EB/OL]. [2012-08-05]. http://wis.ewi.tudelft.nl/imreal/u-sem/.
[14] Heath T, Bizer C. Linked Data: Evolving the Web into a Global Data Space[M]. Morgan & Claypool,2011.
[15] DBpedia[EB/OL]. [2012-08-06]. http://wiki.dbpedia.org/About.
[16] The Tabulator[EB/OL]. [2012-08-06]. http://www.w3.org/2005/ajar/tab.
[17] Disco - Hyperdata Browser[EB/OL]. [2012-08-06]. http://www4.wiwiss.fu-berlin.de/bizer/ng4j/disco/.
[18] Swoogle[EB/OL]. [2012-08-08]. http://swoogle.umbc.edu/.
[19] SWSE[EB/OL]. [2012-08-08]. http://swse.deri.org/.
[20] Sindice[EB/OL]. [2012-08-09]. http://sindice.com/.
[21] IDSpider[EB/OL]. [2012-08-09]. http://code.google.com/p/ldspider/.
[22] Schultz A, Matteini A, Isele R, et al. LDIF-A Framework for Large-Scale Linked Data Integration[C]. In: Proceedings of the 21st International World Web Conference (WWW 2012). 2012.
[23] Schultz A, Matteini A, Isele R, et al. LDIF-Linked Data Integration Framework[C]. In: Proceedings of World Wide Web Conference (WWW 2012), Lyon, France. 2012.
[24] Berners-Lee T, Kagal L. The Fractal Nature of the Semantic Web[J]. AI Magazine, 2008, 29(3):29-34.
[25] Polleres A, Scharffe F, Schindlauer R. SPARQL+ + for Mapping Between RDF Vocabularies[C]. In: Proceedings of the 2007 OTM Confederated International Conference on the Move to Meaningful Internet Systems: CoopIS, DOA, ODBASE, GADA, and IS (OTM’07). Berlin,Heidelberg: Springer-Verlag, 2007: 878-896.
[26] Euzenat J, Scharffe F, Zimmermann A. D2. 2.10: Expressive Alignment Language and Implementation[OL]. [2012-08-05]. ftp://ftp.inrialpes.fr/pub/exmo/reports/kweb-2210.pdf.
[27] Haslhofer B. A Web-based Mapping Technique for Establishing Metadata Interoperability[D]. Vienna: University of Vienna, 2008.
[28] Bizer C, Schultz A. The R2R Framework: Publishing and Discovering Mappings on the Web[C]. In: Proceedings of the 1st International Workshop on Consuming Linked Data (COLD 2010), Shanghai,China. 2010.
[29] Isele R, Jentzsch A, Bizer C. Silk Server-Adding Missing Links While Consuming Linked Data[C]. In: Proceedings of the 1st International Workshop on Consuming Linked Data (COLD 2010), Shanghai,China. 2010.
[30] Dong X L, Naumann F. Data Fusion: Resolving Data Conflicts for Integration[J]. Proceedings of the VLDB Endowment, 2009, 2(2):1654-1655.
[31] Le-Phuoc D, Polleres A, Hauswirth M, et al. Rapid Prototyping of Semantic Mash-ups Through Semantic Web Pipes[C]. In: Proceedings of the 18th International Conference on World Wide Web (WWW’09). New York: ACM, 2009: 581-590.
[32] Nikolov A, Uren V, Motta E, et al. Integration of Semantically Annotated Data by the KnoFuss Architecture[C]. In: Proceedings of the 16th International Conference on Knowledge Engineering: Practice and Patterns (EKAW’08). Berlin,Heidelberg: Springer-Verlag, 2008:265-274.
[33] Mendes P N, Mühleisen H, Bizer C. Sieve: Linked Data Quality Assessment and Fusion[C]. In: Proceedings of the 2012 Joint EDBT/ICDT Workshops (EDBT-ICDT’12). New York: ACM, 2012: 116-123.
[1] 沈志宏,姚畅,侯艳飞,吴林寰,李跃鹏. 关联大数据管理技术: 挑战、对策与实践*[J]. 数据分析与知识发现, 2018, 2(1): 9-20.
[2] 崔家旺,李春旺. 基于关联数据的类簇语义揭示模型研究[J]. 数据分析与知识发现, 2017, 1(4): 57-66.
[3] 姜赢,张婧,朱玲萱. 面向Cytoscape平台的关联数据知识图谱概览抽取与可视化*[J]. 数据分析与知识发现, 2017, 1(3): 29-37.
[4] 汪强兵,章成志. 融合内容与用户手势行为的用户画像构建系统设计与实现*[J]. 数据分析与知识发现, 2017, 1(2): 80-86.
[5] 齐云飞,赵宇翔,朱庆华. 关联数据在数字图书馆移动视觉搜索系统中的应用研究*[J]. 数据分析与知识发现, 2017, 1(1): 81-90.
[6] 杨小平,马奇凤,余力,莫雨婷,吴佳楠,张悦. 评论簇在网络舆论中的情感倾向代表性研究*[J]. 现代图书情报技术, 2016, 32(7-8): 51-59.
[7] 朱玲,薛春香,章成志,傅柱. 微博用户标签与博文内容相关度研究*[J]. 现代图书情报技术, 2016, 32(3): 18-24.
[8] 赵夷平,毕强. 关联数据在学术资源网相似文献发现中的应用研究*[J]. 现代图书情报技术, 2016, 32(3): 41-49.
[9] 夏立新,谭荧. LOD的网络结构分析与可视化*[J]. 现代图书情报技术, 2016, 32(1): 65-72.
[10] 郭振英, 赵文兵, 魏育辉. 轻量级书目本体关联数据建设实践[J]. 现代图书情报技术, 2015, 31(7-8): 139-143.
[11] 高劲松, 程娅, 梁艳琪. 面向关联数据集的本体匹配方法研究[J]. 现代图书情报技术, 2015, 31(6): 33-40.
[12] 李纲, 叶光辉, 张岩. “小众专家”特征识别——基于MetaFilter的实证分析[J]. 现代图书情报技术, 2015, 31(6): 71-77.
[13] 梁艺多, 翟军. 本体推理在关联数据链接发现中的应用研究[J]. 现代图书情报技术, 2015, 31(4): 87-95.
[14] 陈涛, 张永娟, 陈恒. Web数据到RDF数据的框架实现[J]. 现代图书情报技术, 2015, 31(2): 1-6.
[15] 高劲松, 梁艳琪, 李珂, 肖涟, 周习曼. 面向关联数据的电子商务信用信息服务模型研究[J]. 现代图书情报技术, 2014, 30(6): 8-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn