Please wait a minute...
Advanced Search
数据分析与知识发现  2023, Vol. 7 Issue (7): 18-31     https://doi.org/10.11925/infotech.2096-3467.2022.0981
  综述评介 本期目录 | 过刊浏览 | 高级检索 |
基于科学论文和技术专利关联关系识别潜在知识发现方法研究综述*
王诗炜1,2,陈春1,2()
1中国科学院西北生态环境资源研究院 兰州 730000
2中国科学院大学经济与管理学院信息资源管理系 北京 100190
Review of Latent Knowledge Discovery Methods Based on Association Between Scientific Papers and Technology Patents
Wang Shiwei1,2,Chen Chun1,2()
1Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
2Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
全文: PDF (1126 KB)   HTML ( 11
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 通过文献调研梳理总结基于科学论文和技术专利的潜在知识发现方法,总结研究不足和未来发展方向。【文献范围】 以Patents and Papers,Science and Technology,Knowledge Discovery,专利和论文,科学和技术,知识发现等为关键词分别在Web of Science、Springer Link和CNKI等学术平台检索文献,筛选出75篇具有代表性的文献进行综述。【方法】 在科学-技术关联关系的基础上,从数据关联、主体关联、主题关联以及多维度关联4方面对文献进行归纳梳理。【结果】 现有研究方法存在不足,包括识别语料的数据来源具有局限性且异构数据源的不规范性;识别方法的潜在知识发现语义性不足、粒度较粗;基于论文和专利的知识体系和测度指标不完善;识别结果缺乏全面性、动态性、探索性。【局限】 主要选取部分代表性文献进行综述,深入阐述不够深刻;在内容分析层面上,科学-技术关联关系的多策略综合分析方法是目前的热点研究,本文对此方法分析系统性不足;对检索得出的代表性综述文献的选择具有一定的主观性。【结论】 在未来的研究中要整合多源数据库资源并规范化异构数据,增强识别方法的语义分析能力和细化识别粒度,完善知识组织体系并丰富测度指标,加强对潜在知识发现动态演变的研究。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王诗炜
陈春
关键词 科学论文技术专利关联关系科学-技术潜在知识发现    
Abstract

[Objective] This paper reviews the latent knowledge discovery methods based on scientific papers and technology patents to identify deficiencies in current studies and future development directions.[Coverage] A total of 75 representative articles were retrieved using keywords such as “Patents and Papers”, “Science and Technology”, and “Knowledge Discovery” from the Web of Science, Springer Link, and CNKI. [Methods] Based on the scientific-technical association, we reviewed the literature from four aspects: data association, subject association, theme association, and multi-dimensional association. [Results] The existing research methods have limitations, such as the need for more data sources for identifying corpus and the non-standardization of heterogeneous data sources. The potential knowledge discovery of the recognition method needs more semantics and better granularity. The knowledge system and measurement index based on papers and patents still need to be completed. The recognition results need more comprehensiveness, dynamic and exploratory nature. [Limitations] Mainly select some representative literature to review, in-depth elaboration is not deep enough. At the level of content analysis, the multi-strategy comprehensive analysis method of science-technology correlation is a hot research at present, but the analysis of this method is not systematic enough in this paper. The selection of representative review literature obtained from the search has a certain degree of individual subjectivity. [Conclusions] In future research, we should integrate multi-source databases and standardize heterogeneous data, enhance the semantic analysis ability of recognition methods, and refine the recognition granularity. We also need to improve the knowledge organization system, enrich the measurement indicators, and strengthen the research on the dynamic evolution of latent knowledge discovery.

Key wordsScientific Paper    Technology Patent    Association Relation    Science-Technology    Latent Knowledge Discovery
收稿日期: 2022-09-19      出版日期: 2023-09-07
ZTFLH:  G250  
  TP393  
基金资助:*甘肃省知识产权计划项目的研究成果之一(20ZSCQ025)
通讯作者: 陈春,ORCID:0000-0003-4351-4696,E-mail: chenc@llas.ac.cn。   
引用本文:   
王诗炜, 陈春. 基于科学论文和技术专利关联关系识别潜在知识发现方法研究综述*[J]. 数据分析与知识发现, 2023, 7(7): 18-31.
Wang Shiwei, Chen Chun. Review of Latent Knowledge Discovery Methods Based on Association Between Scientific Papers and Technology Patents. Data Analysis and Knowledge Discovery, 2023, 7(7): 18-31.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022.0981      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2023/V7/I7/18
对比项 科学论文 技术专利
核心内涵 基础科学 应用技术
文献类型 学术性、技术性、综述性 发明专利、实用新型和外观设计
著录项目 标题、摘要、关键词、正文和参考文献等 标题、摘要、说明书和权利要求等
术语表达 较为常用和正式的术语 专业词汇或上位概念
Table 1  科学论文和技术专利对比
Fig.1  科学-技术双螺旋结构示意图
作者 年份 分析对象 理论或技术方法
de Solla[20] 1965 医学领域 科学和技术是一对互补的累积体
Narin等[21] 1985 生物领域 新的知识发现离不开科学和技术的相互依存和促进
Verbeek等[22] 2002 药理学、生物技术等10个领域 科技关联是动态的、异构的、高度的;构建科学-技术知识互动模型
Bhattacharya等[24] 2003 薄膜技术领域 科学技术双螺旋理论
van Looy等[25] 2006 新兴工业领域 科学-技术“邻近性”
刘小玲等[26] 2015 科学-技术关系领域 科学与技术的4种关系模式
Narayanamurti等[27] 2016 科学-技术关系领域 基础研究和应用技术构成循环
Godin[28] 2017 科学-技术关系领域 科学-技术呈“线性模型”
Han等[29] 2018 44个技术领域专利数据 科学范畴与技术领域之间联系的整体结构是多对多的,而不是集中的
Zhang等[30] 2019 医药和生物传感器领域 构建具有空间维度的知识流网络
张雪等[1] 2022 中国医药领域 知识流动=知识吸收+知识扩散
Xu等[31] 2022 基因工程疫苗领域 提出发现科技关联主题(LTSTs)的科技语义链接集成模型
Yu等[32] 2022 智慧物联网领域 提出基于MPA和机器学习的研究前沿识别方法
Table 2  科学-技术关联关系发展历程
关系模式 来源 核心观点
线性模式 V.布什[33] 基础科学进步是基础创新的“主要源泉”
弗拉斯卡蒂模式 经济合作与发展组织[34] 基础和应用不是反义词,基础研究会向资助机构感兴趣的方向发展
修正的线性模式 澳大利亚科技委员会[35] 纯研究、战略研究和战术研究分布于即可应用和高度抽象的两极之间
巴斯德象限模式 司托克斯[36] 基础和应用界限不分明,科学研究同时受到两者的影响
修正的动态模式 Guan等[37] 带有应用目的的基础研究将纯基础研究和纯应用研究轨道相链接
科技互动模式 董坤等[38] 当前实践中的4种科学-技术互动新模式:科学带动技术模式(S-T模式)、技术催生科学模式(T-S模式)、科技协同创新模式(MD模式)、相互独立模式(RI模式)
Table 3  基础研究与应用研究的关系模式发展历程
Fig.2  基于科学论文和技术专利的潜在知识发现方法分类
分类 作者 基础理论 方法和技术 数据来源
单向引用 Narin等[21] 科学论文和技术专利密切相关 时间序列分析+科学计量学 生物技术领域的1975-1982年的专利引用数据
Zhang等[42] 科学论文和技术专利间知识转移的时间延迟 传递函数模型 纳米技术、转基因、制药、能源4个领域的NPR
Qu等[43] 科学论文对技术专利的后续发展极具影响力 科学计量指标 电动汽车充电技术领域的NPR
Liaw等[44] 科学论文和技术专利密切相关 科学计量指标 USPTO在2001-2010 年间批准的所有专利的NPR
Gl?nzel等[46] 技术专利在科学论文中发挥作用 文献计量学 1996-2000年专利在SCI中所有科学论文的数据
Hou等[47] 专利睡美人觉醒机制 研究假设+定量模型+层次分析法 2006-2015年间IncoPat平台在中国申请的专利
交叉引用 Gao等[48] 科学论文和技术专利在知识传播不同时期发挥不同功能和作用 专利引用+聚类分析+网络分析+科学计量指标 2010-2012年纳米技术领域在DII中的的专利数据
Huang等[49] 科学-技术关联的趋同程度逐渐增强 文献计量法+研究假设+科学计量指标 燃料电池领域1991-2010年间的专利和WOS中的论文
Table 4  引文关联分析方法对比
作者 基础理论 方法和技术 数据来源
Breschi等[51] 作者-发明人具有守门人和桥梁作用 社会网络分析+科学计量指标 激光、半导体和生物技术1990-2003年在EPO的专利和NPR数据集
Forti等[52] 作者和发明人之间是正向关联 社会网络分析+网络指标+研究假设+Kolmogorov-Smirnov 检验 Patiris中1982-2006年意大利的化学领域专利
Chang[53] 以人为本的科学-技术联动视角 社会网络分析+科学计量指标 WOS中2006-2015年的论文和USPTO中专利
Zhang等[30] 作者-发明人在科学和技术之间发挥桥梁作用 科学计量指标+可视化分析 USPTO中医药和生物传感器领域的专利及其NRP
Wang等[54] 最多产的发明者和高被引作者属于发明人-作者群体 社会网络分析+构建科技网络+
NPR引文分析
USPTO中的1991-2008年的数据
Maraut等[55] 作者-发明人对科技产量贡献巨大 名称消歧+自然语言处理+聚类 SCOPUS中西班牙作者2003-2008年的论文和PATSTAT中1978-2009年的专利
Li等[56] 作者-发明人是科学-技术边界的守门人 社会网络分析+名称消歧+科学
计量指标+可视化分析
DII中1963-2020年基因编辑领域的专利和其在WOS中编入索引的NPR
Table 5  作者-发明人分析方法对比
作者 方法和技术 数据来源
Qi等[60] LDA模型+回归建模+领先滞后分析 纳米科学领域的专利(DII)和论文(WOS)
Sun等[62] skip-gram模型+知识模因识别算法+社区发现算法 石墨烯领域的专利(DII)和论文(WOS)
Takano等[63] 递归聚类+余弦相似度+主题模型 物联网领域的专利(SIPO、EPO、USPTO、JPO、WIPO)和论文(SCI、SSCI、CPCI)
刘自强等[64] 主题词共现+Louvian算法+Gephi主题演化可视化+D3 工具 基因工程疫苗领域的专利(DII)和论文(WOS)
Xu等[65] CCorrLDA2模型+ Kullback-Leiblerdivergence+Gibbs
Sampling+布朗聚类
CHEMDNER语料库和CHEMDNER专利语料库
韩燕等[66] 连边关键程度中心度+知识单元整合+人工对比分析 医疗服务机器人领域的专利(USPTO)和论文(WOS)
韩晓彤等[67] Doc2Vec模型+Louvain算法+主题聚类 3D打印技术领域的专利(SCI、EI)和论文(DII)
Table 6  主题关联分析方法对比
作者 特色方法或技术 数据集
Yu等[32] 结合引文分析和语义分析,融合机器学习和主路径分析 物联网领域在WOS中5 709篇论文和DII中3 300件专利
Li等[69] 结合引文分析和文本挖掘,利用HDP模型改善引文滞后问题 纳米发电机技术领域在WOS中3 024篇论文和DII中431件专利
张雪等[1] 结合专利引文分析和科学计量指标 中国医药领域在WOS中16 845篇论文和USPTO中2 326件专利
Xu等[31] 结合引文分析和语义分析,构建科技语义链接集成模型加强基础主题和应用主题间的语义关联 基因工程疫苗领域在WOS中4 050篇论文和DII中4 146件专利
Ba等[71] 结合主题分析和文本挖掘,整合知识联系和结构联系形成知识网络耦合方法 节能领域在WOS中82 031篇论文和DII中64 203件专利
曾海娇等[15] 结合主题分析和科学计量指标,构建TDI模型 生物农药领域在WOS中264篇论文和DII中50个专利家族
张楠等[72] 结合主题分析和科学计量指标 石墨烯领域在WOS中140 823篇论文和DII中84 696件专利
卢嘉悦等[73] 结合主题分析和科学计量指标 智能网联汽车领域在中国知网中29 641篇论文和PatSnap中9 903件专利
Ferreira等[74] 结合主题分析和科学计量指标 塞拉多重要经济植物物种领域在WOS中4 888篇论文和DII中764件专利
Table 7  多策略综合分析方法对比
识别方法 关联维度和层次 技术/方法 优势 劣势
引文关联
分析方法
引用关系+数据关联 单向/交叉引文网络构建;知识流动的前向引用和后向引用;知识单元耦合 已有的相关研究成果丰富;可明了科学-技术间知识流动方向;能够区分科学-技术的知识输入和输出 引文具有滞后性;论文和专利引用目的和动机不同;论文对专利的引用数据非常少;缺乏语义层面分析
作者-发明人关联
分析方法
主体关系+关系关联 作者-发明人链接网格构建;合著网络分析 由主题更易开展社会网络分析;更易识别出潜在的、交叉的领域内容 同时满足条件的主体有限,研究范围受限;人物名称消歧问题难度较大
主题关联
分析方法
主题关系+聚类关联 主题模型、文本聚类、非相关知识发现、知识单元及分类体系映射 深入挖掘文本内容的语义关联,识别结果可解释性好;识别发现更具细粒度 专利没有关键词,且抽取的准确率无法保证;对相同概念表达不一致;分类体系难以一一对应;类目/主题映射存在时滞问题
多策略综合
分析方法
多维关系+多样关联 引文网络分析、主题模型、聚类分析、科学计量指标 综合了引文分析和主题分析的优势;从多维角度展开分析,更加全面客观,准确度更高、可信度更强;对复杂的、隐形的知识发现更敏锐 方法实现难度更大,识别结果的可解释性效果较差
Table 8  基于科学论文和技术专利识别潜在知识发现的方法比较
[1] 张雪, 张志强. 专利知识吸收和扩散演化规律及影响研究[J]. 科研管理, 2022, 43(6): 160-169.
[1] (Zhang Xue, Zhang Zhiqiang. Research on the Evolution Law and Influence of Patent Knowledge Absorption and Diffusion[J]. Science Research Management, 2022, 43(6): 160-169.)
[2] 樊红侠. 知识发现及其在数字图书馆的应用[J]. 现代情报, 2008, 28(8): 90-92.
[2] (Fan Hongxia. Knowledge Discovery in Database and Its Utilization in Digital Library[J]. Modern Information, 2008, 28(8): 90-92.)
[3] Swanson D R. Fish Oil, Raynaud's Syndrome, and Undiscovered Public Knowledge[J]. Perspectives in Biology and Medicine, 1986, 30(1): 7-18.
pmid: 3797213
[4] Gordon M D, Lindsay R K. Toward Discovery Support Systems: A Replication, Re-examination, and Extension of Swanson's Work on Literature-Based Discovery of a Connection Between Raynaud's and Fish Oil[J]. Journal of the American Society for Information Science, 1996, 47(2): 116-128.
doi: 10.1002/(ISSN)1097-4571
[5] Kostoff R N. Literature-Related Discovery(LRD): Introduction and Background[J]. Technological Forecasting and Social Change, 2008, 75(2): 165-185.
doi: 10.1016/j.techfore.2007.11.004
[6] Kostoff R N. Literature-Related Discovery and Innovation—Update[J]. Technological Forecasting and Social Change, 2012, 79(4): 789-800.
doi: 10.1016/j.techfore.2012.02.002 pmid: 32287411
[7] Ittipanuvat V, Fujita K, Kajikawa Y, et al. Finding Linkage Between Technology and Social Issues: A Literature Based Discovery Approach[C]// Proceedings of PICMET’12:Technology Management for Emerging Technologies. 2012: 2310-2321.
[8] 曹志杰, 冷伏海. 非相关文献知识发现方法在航天科技情报研究中的应用分析[J]. 情报理论与实践, 2008, 31(4): 569-572.
[8] (Cao Zhijie, Leng Fuhai. Research on the Application of Disjointed Literature-Based Knowledge Discovery Method in Aerospace Scientific and Technical Information Service[J]. Information Studies: Theory & Application, 2008, 31(4): 569-572.)
[9] 曹树金, 曹茹烨. 基于知识图谱支持科研创新的跨学科知识发现研究[J]. 情报理论与实践, 2022, 45(11): 10-20.
[9] (Cao Shujin, Cao Ruye. Research on Interdisciplinary Knowledge Discovery Based on Knowledge Graph to Support Scientific Research Innovation[J]. Information Studies: Theory & Application, 2022, 45(11): 10-20.)
[10] 胡玉宁, 李小涛, 朱学芳. 融合主题词-引文的知识发现: 数据优化与内容可视化[J]. 情报杂志, 2022, 41(10): 130-137, 155.
[10] (Hu Yuning, Li Xiaotao, Zhu Xuefang. The Knowledge Discovery of Integrating Subject Words and Citation: Data Optimization and Content Visualization[J]. Journal of Intelligence, 2022, 41(10): 130-137, 155.)
[11] 邓君, 王阮. 口述历史档案资源知识图谱与多维知识发现研究[J]. 图书情报工作, 2022, 66(7): 4-16.
doi: 10.13266/j.issn.0252-3116.2022.07.001
[11] (Deng Jun, Wang Ruan. Research on Knowledge Map and Multidimensional Knowledge Discovery of Oral History Archives Resources[J]. Library and Information Service, 2022, 66(7): 4-16.)
doi: 10.13266/j.issn.0252-3116.2022.07.001
[12] 郭勇, 罗敏, 幸芮. 面向知识发现的药物ADMET情报预测方法[J]. 情报科学, 2023, 41(2):95-100,156.
[12] (Guo Yong, Luo Min, Xing Rui. Drug ADMET Intelligence Prediction Method for Knowledge Discovery[J]. Information Science 2023, 41(2):95-100,156.)
[13] 张晗, 安欣宇, 刘春鹤. 基于多源语义知识图谱的药物知识发现:以药物重定位为实证[J]. 数据分析与知识发现, 2022, 6(7): 87-98.
[13] (Zhang Han, An Xinyu, Liu Chunhe. Building Multi-source Semantic Knowledge Graph for Drug Repositioning[J]. Data Analysis and Knowledge Discovery, 2022, 6(7): 87-98.)
[14] Chen C M. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377.
doi: 10.1002/(ISSN)1532-2890
[15] 曾海娇, 孙巍. 基于专利与论文关联的潜在科学前沿识别——以生物农药领域为例[J]. 农业展望, 2020, 16(9): 93-100.
[15] (Zeng Haijiao, Sun Wei. Identification of Potential Scientific Frontiers Based on Correlation Between Patents and Papers—A Case Study of Biopesticide[J]. Agricultural Outlook, 2020, 16(9): 93-100.)
[16] 杜建, 武夷山. “睡美人”文献的重要特征、预测线索与政策启示[J]. 科学学研究, 2018, 36(11): 1938-1945.
[16] (Du Jian, Wu Yishan. Sleeping Beautiesin Science: Key Characteristics, Early Identification Clues and Science Policy Implications[J]. Studies in Science of Science, 2018, 36(11): 1938-1945.)
[17] 罗瑞, 许海云, 董坤. 领域前沿识别方法综述[J]. 图书情报工作, 2018, 62(23): 119-131.
doi: 10.13266/j.issn.0252-3116.2018.23.015
[17] (Luo Rui, Xu Haiyun, Dong Kun. A Review of the Main Recognition Methods of Frontier Research[J]. Library and Information Service, 2018, 62(23): 119-131.)
doi: 10.13266/j.issn.0252-3116.2018.23.015
[18] Pan W W, Jian L R, Liu T. Knowledge Generation and Diffusion in Science & Technology: An Empirical Study of SiC-MOSFET Based on Scientific Papers and Patents[J]. Technology Analysis & Strategic Management, 2022. DOI: 10.1080/09537325.2022.2106419.
doi: 10.1080/09537325.2022.2106419
[19] Shibata N, Kajikawa Y, Sakata I. Detecting Potential Technological Fronts by Comparing Scientific Papers and Patents[J]. Foresight, 2011, 13(5): 51-60.
doi: 10.1108/14636681111170211
[20] de Solla P D J. Is Technology Historically Independent of Science? A Study in Statistical Historiography[J]. Technology and Culture, 1965, 6(4): 553-568.
doi: 10.2307/3101749
[21] Narin F, Noma E. Is Technology Becoming Science?[J]. Scientometrics, 1985, 7: 369-381.
doi: 10.1007/BF02017155
[22] Verbeek A, Debackere K, Luwel M, et al. Linking Science to Technology: Using Bibliographic References in Patents to Build Linkage Schemes[J]. Scientometrics, 2002, 54(3): 399-420.
doi: 10.1023/A:1016034516731
[23] Casimir H B G. Industries and Academic Freedom[J]. Research Policy, 1971, 1(1): 3-8.
doi: 10.1016/0048-7333(71)90003-5
[24] Bhattacharya S, Kretschmer H, Meyer M. Characterizing Intellectual Spaces Between Science and Technology[J]. Scientometrics, 2003, 58(2): 369-390.
doi: 10.1023/A:1026244828759
[25] van Looy B, Debackere K, Callaert J, et al. Scientific Capabilities and Technological Performance of National Innovation Systems: An Exploration of Emerging Industrial Relevant Research Domains[J]. Scientometrics, 2006, 66(2): 295-310.
doi: 10.1007/s11192-006-0030-3
[26] 刘小玲, 谭宗颖, 张超星. 国内外“科学-技术关系”研究方法述评——聚焦文献计量方法[J]. 图书情报工作, 2015, 59(13): 142-148.
doi: 10.13266/j.issn.0252-3116.2015.13.020
[26] (Liu Xiaoling, Tan Zongying, Zhang Chaoxing. Research Review of “Science-Technology Relationship” Research Methods: Highlights on Bibliometrics Method[J]. Library and Information Service, 2015, 59(13): 142-148.)
doi: 10.13266/j.issn.0252-3116.2015.13.020
[27] Narayanamurti V, Odumosu T. Cycles of Invention and Discovery: Rethinking the Endless Frontier[M]. Cambridge: Harvard University Press, 2016.
[28] Godin B. Models of Innovation: The History of an Idea[M]. Cambridge: The MIT Press, 2017.
[29] Han F, Magee C L. Testing the Science/Technology Relationship by Analysis of Patent Citations of Scientific Papers after Decomposition of Both Science and Technology[J]. Scientometrics, 2018, 116(2): 767-796.
doi: 10.1007/s11192-018-2774-y
[30] Zhang G J, Liu L N, Wei F F. Key Nodes Mining in the Inventor-Author Knowledge Diffusion Network[J]. Scientometrics, 2019, 118(3): 721-735.
doi: 10.1007/s11192-019-03005-2
[31] Xu H Y, Yue Z H, Pang H S, et al. Integrative Model for Discovering Linked Topics in Science and Technology[J]. Journal of Informetrics, 2022, 16(2): 101265.
doi: 10.1016/j.joi.2022.101265
[32] Yu D J, Yan Z P. Combining Machine Learning and Main Path Analysis to Identify Research Front: From the Perspective of Science-Technology Linkage[J]. Scientometrics, 2022, 127(7): 4251-4274.
[33] V.布什. 科学:没有止境的前沿[M]. 范岱年译. 北京: 商务印书馆, 2004.
[33] (Bush Vannevar. Science: The Endless Frontier[M]. Translated by Fan Dainian. Beijing: The Commercial Press, 2004.)
[34] 经济合作与发展组织. 弗拉斯卡蒂手册: 研究与试验发展调查实施标准[M]. 北京: 科学技术文献出版社, 2010.
[34] (OECD. Frattie Handbook: Implementation Standards of Research and Experimental Development Survey[M]. Beijing: Scientific and Technical Documents Publishing House, 2010.)
[35] 澳大利亚科学技术委员会. 基础科学与国家目标[M]. 澳大利亚政府出版局, 1984.
[35] (Australian Science and Technology Commission. Basic Science and National Goals[M]. Australian Government Publishing Service, 1984.)
[36] D.E.司托克斯. 基础科学与技术创新:巴斯德象限[M]. 周春彦,谷春立译. 北京: 科学出版社, 1999.
[36] (Stokes D E. Pasteur's Quadrant: Basic Science and Technological Innovation[M]. Translated by Zhou Chunyan, Gu Chunli. Beijing: Science Press, 1999.)
[37] Guan J C, He Y. Patent-Bibliometric Analysis on the Chinese Science—Technology Linkages[J]. Scientometrics, 2007, 72(3): 403-425.
doi: 10.1007/s11192-007-1741-1
[38] 董坤, 许海云, 罗瑞, 等. 科学与技术的关系分析研究综述[J]. 情报学报, 2018, 37(6): 642-652.
[38] (Dong Kun, Xu Haiyun, Luo Rui, et al. Review of the Research on Relationship Between Science and Technology[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(6): 642-652.)
[39] Hammarfelt B. Linking Science to Technology: The “Patent Paper Citation” and the Rise of Patentometrics in the 1980s[J]. Journal of Documentation, 2021, 77(6): 1413-1429.
[40] Egghe L, Guns R, Rousseau R. Thoughts on Uncitedness: Nobel Laureates and Fields Medalists as Case Studies[J]. Journal of the American Society for Information Science and Technology, 2011, 62(8): 1637-1644.
doi: 10.1002/asi.v62.8
[41] van Raan A F J. Sleeping Beauties in Science[J]. Scientometrics, 2004, 59(3): 467-472.
doi: 10.1023/B:SCIE.0000018543.82441.f1
[42] Zhang G J, Feng Y Q, Yu G, et al. Analyzing the Time Delay Between Scientific Research and Technology Patents Based on the Citation Distribution Model[J]. Scientometrics, 2017, 111(3): 1287-1306.
doi: 10.1007/s11192-017-2357-3
[43] Qu Z, Zhang S S. References to Literature from the Business Sector in Patent Documents: A Case Study of Charging Technologies for Electric Vehicles[J]. Scientometrics, 2020, 124(2): 867-886.
doi: 10.1007/s11192-020-03518-1
[44] Liaw Y C, Chan T Y, Fan C Y, et al. Can the Technological Impact of Academic Journals be Evaluated? The Practice of Non-patent Reference (NPR) Analysis[J]. Scientometrics, 2014, 101(1): 17-37.
doi: 10.1007/s11192-014-1337-0
[45] van Raan A F J, Winnink J J. Do Younger Sleeping Beauties Prefer a Technological Prince?[J]. Scientometrics, 2018, 114(2): 701-717.
doi: 10.1007/s11192-017-2603-8 pmid: 29449753
[46] Glänzel W, Meyer M. Patents Cited in the Scientific Literature: An Exploratory Study of ‘Reverse’ Citation Relations[J]. Scientometrics, 2003, 58(2): 415-428.
[47] Hou J H, Yang X C. Patent Sleeping Beauties: Evolutionary Trajectories and Identification Methods[J]. Scientometrics, 2019, 120(1): 187-215.
doi: 10.1007/s11192-019-03123-x
[48] Gao J P, Ding K, Teng L, et al. Hybrid Documents Co-citation Analysis: Making Sense of the Interaction Between Science and Technology in Technology Diffusion[J]. Scientometrics, 2012, 93(2): 459-471.
doi: 10.1007/s11192-012-0691-z
[49] Huang M H, Yang H W, Chen D Z. Increasing Science and Technology Linkage in Fuel Cells: A Cross Citation Analysis of Papers and Patents[J]. Journal of Informetrics, 2015, 9(2): 237-249.
doi: 10.1016/j.joi.2015.02.001
[50] Noyons E C M, van Raan A F J, Grupp H, et al. Exploring the Science and Technology Interface: Inventor-Author Relations in Laser Medicine Research[J]. Research Policy, 1994, 23(4): 443-457.
doi: 10.1016/0048-7333(94)90007-8
[51] Breschi S, Catalini C. Tracing the Links Between Science and Technology: An Exploratory Analysis of Scientists’ and Inventors’ Networks[J]. Research Policy, 2010, 39(1): 14-26.
doi: 10.1016/j.respol.2009.11.004
[52] Forti E, Franzoni C, Sobrero M. Bridges or Isolates? Investigating the Social Networks of Academic Inventors[J]. Research Policy, 2013, 42(8): 1378-1388.
doi: 10.1016/j.respol.2013.05.003
[53] Chang S H. A Pilot Study on the Connection Between Scientific Fields and Patent Classification Systems[J]. Scientometrics, 2018, 114(3): 951-970.
doi: 10.1007/s11192-017-2613-6
[54] Wang G B, Guan J C. Measuring Science-Technology Interactions Using Patent Citations and Author-Inventor Links: An Exploration Analysis from Chinese Nanotechnology[J]. Journal of Nanoparticle Research, 2011, 13(12): 6245-6262.
doi: 10.1007/s11051-011-0549-y
[55] Maraut S, Martínez C. Identifying Author-Inventors from Spain: Methods and a First Insight into Results[J]. Scientometrics, 2014, 101(1): 445-476.
[56] Li X, Zhao D Z, Hu X J. Gatekeepers in Knowledge Transfer Between Science and Technology: An Exploratory Study in the Area of Gene Editing[J]. Scientometrics, 2020, 124(2): 1261-1277.
doi: 10.1007/s11192-020-03537-y
[57] 宋艳辉, 邱均平. 发明人专利文献耦合与发明人德温特分类号耦合比较研究——以非专利实施主体为例[J]. 情报学报, 2021, 40(4): 364-374.
[57] (Song Yanhui, Qiu Junping. A Comparative Study of Inventor Bibliographic-Patent Coupling and Inventor-Patent-Classification-Coupling——Non-Practicing Entities as Example[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(4): 364-374.)
[58] 白如江, 冷伏海. k-clique社区知识创新演化方法研究[J]. 图书情报工作, 2013, 57(17): 86-94.
doi: 10.7536/j.issn.0252-3116.2013.17.017
[58] (Bai Rujiang, Leng Fuhai. Knowledge Innovational Evolution Analysis Based on k-clique Community Network[J]. Library and Information Service, 2013, 57(17): 86-94.)
doi: 10.7536/j.issn.0252-3116.2013.17.017
[59] 赖院根. 期刊论文与专利文献的链接研究[J]. 图书情报知识, 2011(1): 63-69.
[59] (Lai Yuangen. Research on Linking Method Between Periodical Thesis and Patent Literature[J]. Document, Information & Knowledge, 2011(1): 63-69.)
[60] Qi Y S, Zhu N, Zhai Y J, et al. The Mutually Beneficial Relationship of Patents and Scientific Literature: Topic Evolution in Nanoscience[J]. Scientometrics, 2018, 115(2): 893-911.
doi: 10.1007/s11192-018-2693-y
[61] Kuhn T, Perc M, Helbing D. Inheritance Patterns in Citation Networks Reveal Scientific Memes[J]. Physical Review X, 2014, 4(4): 041036.
doi: 10.1103/PhysRevX.4.041036
[62] Sun X L, Ding K. Identifying and Tracking Scientific and Technological Knowledge Memes from Citation Networks of Publications and Patents[J]. Scientometrics, 2018, 116(3): 1735-1748.
doi: 10.1007/s11192-018-2836-1
[63] Takano Y, Kajikawa Y. Extracting Commercialization Opportunities of the Internet of Things: Measuring Text Similarity Between Papers and Patents[J]. Technological Forecasting and Social Change, 2019, 138: 45-68.
doi: 10.1016/j.techfore.2018.08.008
[64] 刘自强, 许海云, 罗瑞, 等. 基于主题关联分析的科技互动模式识别方法研究[J]. 情报学报, 2019, 38(10): 997-1011.
[64] (Liu Ziqiang, Xu Haiyun, Luo Rui, et al. Research on Scientific and Technological Interaction Patterns Based on Topic Relevance Analysis[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(10): 997-1011.)
[65] Xu S, Zhai D S, Wang F F, et al. A Novel Method for Topic Linkages Between Scientific Publications and Patents[J]. Journal of the Association for Information Science and Technology, 2019, 70(9): 1026-1042.
doi: 10.1002/asi.v70.9
[66] 韩燕, 彭爱东. 基于技术形成三要素的技术机会识别研究——以医疗服务机器人领域技术为例[J]. 情报理论与实践, 2020, 43(5): 156-162.
[66] (Han Yan, Peng Aidong. Study on Technology Opportunity Identification Based on Elements of Technology Formation: A Case of the Technology of Medical Service Robot[J]. Information Studies: Theory & Application, 2020, 43(5): 156-162.)
[67] 韩晓彤, 朱东华, 汪雪锋. 科学推动下技术机会发现方法研究[J]. 图书情报工作, 2022, 66(10): 19-32.
doi: 10.13266/j.issn.0252-3116.2022.10.002
[67] (Han Xiaotong, Zhu Donghua, Wang Xuefeng. Research on the Method of Technology Opportunity Discovery Promoted by Science[J]. Library and Information Service, 2022, 66(10): 19-32.)
doi: 10.13266/j.issn.0252-3116.2022.10.002
[68] Winnink J J, Tijssen R J W. R&D Dynamics and Scientific Breakthroughs in HIV/AIDS Drugs Development: The Case of Integrase Inhibitors[J]. Scientometrics, 2014, 101(1): 1-16.
doi: 10.1007/s11192-014-1330-7
[69] Li X, Fan M J, Zhou Y, et al. Monitoring and Forecasting the Development Trends of Nanogenerator Technology Using Citation Analysis and Text Mining[J]. Nano Energy, 2020, 71: 104636.
[70] Xu H Y, Winnink J, Yue Z H, et al. Topic-Linked Innovation Paths in Science and Technology[J]. Journal of Informetrics, 2020, 14(2): 101014.
doi: 10.1016/j.joi.2020.101014
[71] Ba Z C, Liang Z T. A Novel Approach to Measuring Science-Technology Linkage: From the Perspective of Knowledge Network Coupling[J]. Journal of Informetrics, 2021, 15(3): 101167.
doi: 10.1016/j.joi.2021.101167
[72] 张楠, 赵辉. 基于论文-专利的石墨烯领域硬科技创新技术主题识别研究[J]. 高技术通讯, 2021, 31(8): 892-900.
[72] (Zhang Nan, Zhao Hui. Identification of Key & Core Technology Innovation Based on Patent and Paper Data in Graphene Field[J]. Chinese High Technology Letters, 2021, 31(8): 892-900.)
[73] 卢嘉悦, 李艳. 基于论文和专利数据的研究前沿挖掘研究——以智能网联汽车领域为例[J]. 中国发明与专利, 2021, 18(1): 13-20.
[73] (Lu Jiayue, Li Yan. Mining the Cutting Edge Based on Scientific Papers and Patents——A Case Study on Intelligent and Connected Vehicle[J]. China Invention & Patent, 2021, 18(1): 13-20.)
[74] Ferreira R B, Parreira M R, Nabout J C. Is There Concordance Between Science and Technology in Natural Science? Mapping the Relationship among Number of Papers and Patents from Research on Cerrado Plants[J]. World Patent Information, 2022, 69: 102108.
doi: 10.1016/j.wpi.2022.102108
[75] 高俊国, 张欢欢, 李岩. 基于专利和论文分析的爆炸喷涂技术发展态势研究[J]. 高技术通讯, 2022, 32(4): 421-429.
[75] (Gao Junguo, Zhang Huanhuan, Li Yan. Research on the Development Trends of Detonation Spraying Technology Based on Patents and Papers[J]. Chinese High Technology Letters, 2022, 32(4): 421-429.)
[1] 牟冬梅, 金姗, 琚沅红. 基于文献数据的疾病与基因关联关系研究*[J]. 数据分析与知识发现, 2018, 2(8): 98-106.
[2] 孟园, 王洪伟. 中文评论产品特征与观点抽取方法研究*[J]. 现代图书情报技术, 2016, 32(2): 16-24.
[3] 周杰, 刘玉琴, 曾建勋. 学术研究主体与研究内容间的关联关系可视化方法[J]. 现代图书情报技术, 2012, (11): 92-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn