Please wait a minute...
Advanced Search
数据分析与知识发现  2024, Vol. 8 Issue (3): 1-9     https://doi.org/10.11925/infotech.2096-3467.2024.0188
  专家视点 本期目录 | 过刊浏览 | 高级检索 |
AI赋能的P4ST决策智能分析:寻找知识服务的新质生产力
张晓林()
上海科技大学 上海 201210
中国科学院文献情报中心 北京 100190
AI-Empowered Policy for Science & Technology Decision Intelligence—Developing New Quality Productive Forces for Knowledge Services
Zhang Xiaolin()
ShanghaiTech University, Shanghai 201210, China
National Science Library, Chinese Academy of Sciences, Beijing 100190, China
全文: PDF (1195 KB)   HTML ( 25
输出: BibTeX | EndNote (RIS)      
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓林
Abstract

The onset of ChatGPT, Sora, Claude-3, and the like, has brought about the era of AIGC for text, images, and videos. Literature review, scientometric analysis, and S&T trends analysis have also being rapidly taken over by AI tools, thus making traditional knowledge services (KS) falling into a “low-quality productivity trap”. It is difficult to develop new quality productive forces with competitive vitality and resilience by only using AI to optimize the execution efficiency of traditional KS business logic. AI, as illustrated by Large Language Models (LLM), has broken the reductionist “research model” that disassembles complex phenomena and systems into individual parts to study and solve, and the turing computing model that pursues deterministic computing, therefore able to handle the dimensional disaster from the combinatorial explosion of complex multi-interactive systems. This helps us to truly take “complex problems, dynamic decision conditions, and selective operational solutions” as the goal of KS, and provides users with decision intelligence. This may be the starting point in the search for new quality productive forces in KS. But it is imperative to ask “what is the real problem” from the point of First Principle. Starting from the fundamental needs of decision users of KS, we need to think clearly about what KS should do, can do, and must do. Admittedly, when problems of decision-makers ask for various data or information analysis, what they really need is to answer is not just “what is” but “why is so and what can/should I do” in their S&T planning, organizing, resourcing, evaluating, etc., under their specific conditions. If so, KS should now be positioned as a “user decision-making productivity service”, focusing on Policy for S&T (P4ST), hence transforming KS from the literature-oriented or data-oriented or indicator-oriented to user-problem/solution-oriented models, and from data or computational intelligence to cognitive and decision intelligence. Based on several examples, this paper proposes a generalized decision-making genomic model for AI-empowered Policy for Science & Technology (AI4P4ST). The model consists of an Agent axis (multi-levels from individuals to nations), an Action axis (planning, organizing, budgeting, evaluation, etc.), and an Outcome axis (plans, institutions, teams, projects, papers, patents, products, etc.). Use of this model supports intelligent decision-making analysis under the dynamics of complex systems. With multiple combinations of variables that interact in known or unknown ways, we can perform multi-modal cross-scale modeling and analysis of multi-dimensional multi-variates, continuously adjusting to approximate possible solutions with quantifiable uncertainties, so that decision-makers can select for a decision. AI4P4ST analysis can progressively implement the P4ST analysis pipelines that supports the dynamics of complex systems. The LLM Prompt Engineering and its many augmented models can be used to build an AI4P4ST Chain of Analyses. In addition, technologies such as AI Agents, Multi-Agents Models, and Mixture of Experts (MoE) models, as well as mechanisms such as LangChain or GPTSwarm, can be employed to support AI-enabled application processes that combine multiple LLMs and specialized tools, thus enabling intelligent processes such as planning, prediction, experimentation, verification, and analysis for AI4P4ST. Of course, AI4P4ST still faces challenges from complex data environments and complex social dynamics, including multi-modal heterogeneous data environments, boundary uncertainty, strong game adversariality, difficulties in handling critical states, and weak counterfactual reasoning. This may require a combination of knowledge-based intelligence modeling, simulation and prediction based on the complex system dynamics, and data-based LLM modeling, and the use of LLM models to plan, coordinate, and support these modeling and analysis.

Key wordsAI    Policy for Science and Technology    Knowledge Services    New Quality Productive Forces    Decision Intelligence Decision-making Genomic Model    AI for P4ST Chain of Analyses
收稿日期: 2024-03-01      出版日期: 2024-04-12
通讯作者: 张晓林,ORCID:0000-0001-8891-8366,E-mail: zhangxl@mail.las.ac.cn。   
引用本文:   
张晓林. AI赋能的P4ST决策智能分析:寻找知识服务的新质生产力[J]. 数据分析与知识发现, 2024, 8(3): 1-9.
Zhang Xiaolin. AI-Empowered Policy for Science & Technology Decision Intelligence—Developing New Quality Productive Forces for Knowledge Services. Data Analysis and Knowledge Discovery, 2024, 8(3): 1-9.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2024.0188      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2024/V8/I3/1
  科技决策需求场景-场景化数据-解决方案的量化表征模型
  P4ST泛化模型
  P4ST决策基因组
  全球化条件下科技资源配置机制研究分析模型
[1] Wang H C, Fu T F, Du Y Q. et al. Scientific Discovery in the Age of Artificial Intelligence[J]. Nature, 2023, 620: 47-60.
doi: 10.1038/s41586-023-06221-2
[2] Zhang Q, Ding K Y, Lyv T W, et al. Scientific Large Language Models: A Survey on Biological & Chemical Domains[OL]. arXiv Preprint, arXiv:2401.14656.
[3] 杨小康, 许岩岩, 陈露, 等. AI for Science:智能化科学设施变革基础研究[J]. 中国科学院院刊, 2024, 39(1): 59-69.
[3] (Yang Xiaokang, Xu Yanyan, Chen Lu, et al. AI for Science:AI Enabled Scientific Facility Transforms Fundamental Research[J]. Bulletin of Chinese Academy of Sciences, 2024, 39(1): 59-69.)
[4] Microsoft Research AI4Science[EB/OL].[2024-03-03]. https://www.microsoft.com/en-us/research/lab/microsoft-research-ai4science/.
[5] Marjit U. The Best 8 AI-Powered Tools for Literature Review[EB/OL]. (2023-05-29). [2024-03-03]. https://researcherssite.com/the-best-8-ai-powered-tools-for-literature-review/.
[6] AMiner知因分析数据库[EB/OL]. [2024-03-05]. https://vip.aminer.cn/analysis/.
[7] 星火科研助手[EB/OL]. [2024-03-05]. https://paper.iflytek.com/.
[8] Dagdelen J, Dunn A, Lee S, et al. Structured Information Extraction from Scientific Text with Large Language Models[J]. Nature Communications, https://www.nature.com/articles/s41467-024-45563-x.
[9] Selby D, Spriestersbach K, Iwashita Y, et al. Had Enough of Experts? Quantitative Knowledge Retrieval from Large Language Models[OL]. arXiv Preprint, arXiv: 2402.07770.
[10] Gao Z L, Brantley K, Joachims T. REVIEWER2: Optimizing Review Generation Through Prompt Generation[OL]. arXiv Preprint, arXiv:2402.10886.
[11] 使用GPT-4, 学渣比学霸更有优势[EB/OL]. [2024-03-14]. https://new.qq.com/rain/a/20240216A00SGJ00.
[12] Eloundou T, Manning S, Mishkin P, et al. GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models[OL]. arXiv Preprint, arXiv:2303.10130.
[13] Large Language Models and the End of Programming with Matt Welsh[EB/OL]. (2023-05-09).[2024-03-14]. https://learning.acm.org/techtalks/endporgramming.
[14] 澎湃新闻. 李彦宏:“程序员”职业将不复存在[EB/OL]. (2024-03-10). [2024-03-10]. https://www.thepaper.cn/newsDetail_forward_26628967.
[15] 2024年大模型Multi-agent多智能体应用技术:AutoGen, MetaGPT, XAgent, AutoAgents,CrewAI[EB/OL]. [2024-03-02]. https://zhuanlan.zhihu.com/p/671355141.
[16] MoE-超越ChatGPT的开源混合专家模型[EB/OL]. [2024-03-15]. https://zhuanlan.zhihu.com/p/674162664.
[17] 新智元. Claude 3颠覆物理/化学, 2小时破解博士一年实验成果[EB/OL]. (2024-03-07).[2024-03-15]. https://www.36kr.com/p/2679053260453641.
[18] 郑永年. 中国跨越“中等技术陷阱”的策略研究[J]. 中国科学院院刊, 2023, 38(11): 1579-1592.
[18] (Zheng Yongnian. How can China Avoid the Middle-technology Trap?[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(11): 1579-1592.)
[19] 国家数据局等. “数据要素×”三年行动计划(2024—2026年)[EB/OL]. (2023-12-31).[2024-03-03]. http://www.cac.gov.cn/2024-01/05/c_1706119078060945.htm.
[20] 微软,真的又行了?[EB/OL]. (2023-04-14).[2024-03-03]. https://36kr.com/p/2214511891789185.
[21] Nadella S, Shaw G, Nichols J. Hit Refresh: The Quest to Rediscover Microsoft’s Soul and Imagine a Better Future for Everyone[M]. Harper Business, 2017.
[22] 李国杰. 智能化科研(AI4R):第五科研范式[J]. 中国科学院院刊, 2024, 39(1): 1-9.
[22] (Li Guojie. AI4R: The Fifth Scientific Research Paradigm[J]. Bulletin of Chinese Academy of Sciences, 2024, 39(1): 1-9.)
[23] 张晓林. 从Informetrics到Decision Intelligence:呼唤知识发现研究的范式演变[J]. 数据分析与知识发现, 2019, 3 (1): 1-2.
[24] 张晓林. 支持复杂场景下的决策智能——数据分析与知识发现的新挑战[J]. 数据分析与知识发现, 2021, 5(1): 1-2.
[25] 张晓林. 从猿到人:探索知识服务的凤凰涅槃之路[J]. 数据分析与知识发现. 2023, 7 (3): 1-4.
[26] Kauffman S A, Roli A. A Third Transition in Science?[J]. Interface Focus, 2023, 13(3):20220063.
doi: 10.1098/rsfs.2022.0063
[27] 新华社. 习近平在中共中央政治局第十一次集体学习时强调:加快发展新质生产力扎实推进高质量发展[EB/OL].(2024-02-01). [2024-03-03]. https://www.gov.cn/yaowen/liebiao/202402/content_6929446.htm.
[28] 决策智能:方兴未艾的人工智能新方向[EB/OL]. [2024-03-05]. http://news.sciencenet.cn/htmlnews/2020/11/448150.shtm.
[29] 王学昭, 王燕鹏, 赵萍, 等. 场景化智慧数据驱动的情报研究模式:概念、技术框架和实验验证[J]. 数据分析与知识发现, 2023, 7(5):1-9.
[29] (Wang Xuezhao, Wang Yanpeng, Zhao Ping, et al. Scenarized Intelligent Data-Driven Research Model: Concept, Technical Framework, and Experimental Verification[J]. Data Analysis and Knowledge Discovery, 2023, 7(5): 1-9.)
[30] Hinton G, Vinyals O, Dean J. Distilling the Knowledge in a Neural Network[OL]. arXiv Preprint, arXiv: 1503.02531.
[31] 胡智慧等. 全球化条件下科技资源配置机制研究[R]. 中国科学院发展规划局, 2014.
[32] 李旭. 社会系统动力学[M]. 上海: 复旦大学出版社, 2009.
[32] (Li Xu. Social System Dynamics[M]. Shanghai: Fudan University Press, 2009.)
[33] 陈挺. 面向诊断的计算政策学分析[D]. 北京: 中国科学院大学, 2023.
[33] (Chen Ting. Research on Diagnostic-oriented Computational Analysis Policy Methods[D]. Beijing: University of Chinese Academy of Sciences, 2023.)
[34] Dias M F, Pedrozo E A, Da Silva T N. The Innovation Process as a Complex Structure with Multilevel Rules[J]. Journal of Evolutionary Economics, 2014, 24: 1067-1084.
doi: 10.1007/s00191-014-0384-2
[35] 小样本提示[EB/OL]. [2024-02-03]. https://www.promptingguide.ai/zh/techniques/fewshot.
[36] Chu Z, Chen J C, Chen Q L, et al. A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future[OL]. arXiv Preprint, arXiv: 2309.15402.
[37] Zhang Z S, Zhang A, Li M, et al. Automatic Chain of Thought Prompting in Large Language Models[OL]. arXiv Preprint, arXiv: 2210.03493.
[38] Yao S Y, Yu D, Zhao J, et al. Tree of Thoughts: Deliberate Problem Solving with Large Language Models[OL]. arXiv Preprint, arXiv: 2305.10601.
[39] Besta M, Blach N, Kubicek A, et al. Graph of Thoughts: Solving Elaborate Problems with Large Language Models[OL]. arXiv Preprint, arXiv: 2308.09687.
[40] Wang J N, Sun Q S, Chen N, et al. Boosting Language Models Reasoning with Chain-of-Knowledge Prompting[OL]. arXiv Preprint, arXiv: 2306.06427.
[41] Gao Y F, Xiong Y, Gao X Y. et al. Retrieval-Augmented Generation for Large Language Models: A Survey[OL]. arXiv Preprint, arXiv: 2312.10997.
[42] Ektefaie Y, Dasoulas G, Noori A, et al. Multimodal Learning with Graphs[J]. Nature Machine Intelligence, https://doi.org/10.1038/s42256-023-00624-6.
[43] Xi Z H, Chen W X, Guo X, et. al. The Rise and Potential of Large Language Model Based Agents: A Survey[OL]. arXiv Preprint, arXiv: 2309.07864.
[44] Yang H, Yue S F, He Y Z. Auto-GPT for Online Decision Making: Benchmarks and Additional Opinions[OL]. arXiv Preprint, arXiv: 2306.02224.
[45] Boiko D A, MacKnight R, Gomes G. Emergent Autonomous Scientific Research Capabilities of Large Language Models[OL]. arXiv Preprint, arXiv: 2304.05332.
[46] Bran A M, Cox S, Schilter O, et al. ChemCrow: Augmenting Large-Language Models with Chemistry Tools[OL]. arXiv Preprint, arXiv: 2304.05376.
[47] LangChain中文网[EB/OL]. [2024-03-03]. https://www.langchain.com.cn/.
[48] AI-Engineer-Foundation/agent-protocol[EB/OL]. [2024-03-15]. https://github.com/AI-Engineer-Foundation/agent-protocol.
[49] Zhuge M C, Liu H Z, Faccio F, et al. Mindstorms in Natural Language-Based Societies of Mind[OL]. arXiv Preprint, arXiv: 2305.17066.
[50] Zhuge M C, Wang W Y, Kirsch L, et al. Language Agents as Optimizable Graphs[OL]. arXiv Preprint, arXiv: 2402.16823.
[51] 顾险峰. Sora物理悖谬的几何解释[OL].[2024-02-26]. https://b23.tv/mgtrr44.
[52] 郑庆华. 大数据知识工程的理论与应用[R]. 人工智能大模型技术高峰论坛, 2023.
[53] 将大模型与小模型结合的8种常用策略[EB/OL].[2024-03-05]. https://blog.csdn.net/weixin_42645636/article/details/135680706.
[54] Siegenfeld A F, Bar-Yam Y. An Introduction to Complex Systems Science and Its Applications[OL]. arXiv Preprint, arXiv: 1912.05088.
[55] 王建硕. ChatGPT开创的机器人和机器人对话的世界[R]. AIGC创建者大会, 2023.
[56] 张婕. AIGC与产业创新[R]. AIGC创建者大会, 2023.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn