Please wait a minute...
New Technology of Library and Information Service  2002, Vol. 18 Issue (4): 33-35    DOI: 10.11925/infotech.1003-3513.2002.04.13
Current Issue | Archive | Adv Search |
User Relevance Feedback for Information Retrieval System
Chen Dingquan
(The Documentation and Information Center of CAS, Beijing 100080,China)
Download: PDF(0 KB)   HTML  
Export: BibTeX | EndNote (RIS)      
Abstract  

Based on vector space model and probability model, this paper elaborates how to adopt relevance feedback from user to improve information retrieval performance,it also discusses how does relevance feedback expand query and reweight terms .

Key wordsInformation retrieval      Relevance feedback      Query expansion      Terms reweighting     
Received: 14 March 2002      Published: 25 August 2002
: 

G354

 
Corresponding Authors: Chen Dingquan   
About author:: Chen Dingquan

Cite this article:

Chen Dingquan. User Relevance Feedback for Information Retrieval System. New Technology of Library and Information Service, 2002, 18(4): 33-35.

URL:

http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.1003-3513.2002.04.13     OR     http://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2002/V18/I4/33

[1] Ricardo Baeza-Yates, Berthier Ribeiro-Neto.Modern Information Retrieval.England:Addison-Wesley,1999
[2] IJsbrand  J.Aalbersberg.Incremental Relevance Feedback.SIGIR'92:Proceeding of the 15th ACM SIGIR Conference on Research and Development in Information Retrieval,11-22,1992
[3] Gerald Kowalski.Information Retrieval System: Theory and Implementation(2nd).USA:Kluwer Academic Publishers,1998
[4] Zhixiang Chen, Xiannong Meng, Richard H. Fowler.FEATURES:Real-Time Adaptive Feature and Document Learning for Web Search.J. of The American Society for Information and Technology,2001,52(8):655-665.
[5] Donna Harman.Relevance Feedback Revisited.SIGIR'92:Proceeding of the 15th ACM SIGIR Conference on Research and Development in Information Retrieval,1-10,1992.
[6] W.B. Croft.Experiments with representation in a document retrieval system.Information Technology:Research and Development,1983,2(1):1-21.
[7] D.J.Harper and C.J. van Rijsbergen.An evaluation of feedback in document retrieval retrieval using co-occurrence data .J. of Documentation,1978,34(3):180-216.
[8] D.J.Harper.Relevance Feedback in Document Retrieval System: An Evaluation of Probability Strategies.PhD thesis, Jesus College,Cambridge,England,1980.
[9] H.Wu, G.Salton.The estimation of term relevance weights using relevance feedback.J.ofDocumentation,1981,37(4):194-214
[10] Makoto Iwayama.Relevance Feedback with a Small Number of Relevance Judgements: Incremental Relevance Feedback vs. Document Clustering.SIGIR'2000:Proceeding of the 15th ACM SIGIR Conference on Research and Development in Information Retrieval,10-16,2000.
[11] 陶跃华,孙茂松.搜索引擎中相关性反馈技术.情报理论与实践,2001,24(4):295-297
[12] 战学刚.中文信息检索中的相关反馈.计算机科学,2000,27,37-42

[1] Haixia Sun,Lei Wang,Yingjie Wu,Weina Hua,Junlian Li. Matching Strategies for Institution Names in Literature Database[J]. 数据分析与知识发现, 2018, 2(8): 88-97.
[2] Chaofan Yang,Zhonghua Deng,Xin Peng,Bin Liu. Review of Information Retrieval Research: Case Study of Conference Papers[J]. 数据分析与知识发现, 2017, 1(7): 35-43.
[3] Xiaojuan Zhang, Yi Han. Reviews on Temporal Information Retrieval[J]. 数据分析与知识发现, 2017, 1(1): 3-15.
[4] Mingxuan Huang. Cross Language Information Retrieval Model Based on Matrix-weighted Association Patterns Mining[J]. 数据分析与知识发现, 2017, 1(1): 26-36.
[5] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
[6] Heng Ding, Wei Lu. A Study on Correlation-based Cross-Modal Information Retrieval[J]. 现代图书情报技术, 2016, 32(1): 17-23.
[7] Liu Feng, Li Yu, Lv Xueqiang, Li Zhuo. Research on Query Topic Classification Method[J]. 现代图书情报技术, 2015, 31(4): 10-17.
[8] Mao Jin, Li Gang, Cao Yujie. Re-rank Retrieval Results Through Subject Indexing[J]. 现代图书情报技术, 2014, 30(7): 48-55.
[9] Qiu Junping, Fang Guoping. The Comparative Analysis of Natural Language Processing Research at Home and Abroad Based on Knowledge Mapping[J]. 现代图书情报技术, 2014, 30(12): 51-61.
[10] Tang Jingxiao,Lv Xueqiang,Liu Chengyang,Li Han. A Hierarchical Framework for User Intention Recognition[J]. 现代图书情报技术, 2014, 30(1): 36-42.
[11] Zhang Mei, Duan Jianyong, Xu Jichao. Person Name Attribute Knowledge Mining and Its Application for Query Classification[J]. 现代图书情报技术, 2013, 29(9): 82-87.
[12] Zhou Shanshan, Bi Qiang, Gao Junfeng. A Method of Information Retrieval Results Visualization Based on Social Network Analysis[J]. 现代图书情报技术, 2013, 29(11): 81-85.
[13] Ma Junhong. A Staged and Integrated Semantic Similarity Algorithm of Text[J]. 现代图书情报技术, 2013, 29(10): 20-26.
[14] Xiao Ming, Li Wenchao, Xia Qiuju. Mapping the Themes of Information Retrieval Based on Prefuse and Hierarchical Clustering[J]. 现代图书情报技术, 2012, 28(4): 35-40.
[15] Qian Li, Zhang Zhixiong, Zou Yimin, Huang Yongwen. Application of Information Visualization Retrieval in Digital Library[J]. 现代图书情报技术, 2012, 28(4): 74-78.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn