Please wait a minute...
Data Analysis and Knowledge Discovery  2023, Vol. 7 Issue (10): 37-49    DOI: 10.11925/infotech.2096-3467.2022.0895
Current Issue | Archive | Adv Search |
Influencing Mechanisms of Triadic Closure in Pharmaceutical — Opportunity, Trust, and Motivation
Wu Shengnan1(),Sun Yidan1,Pu Hongjun1,Dong Jizong1,Gao Jian1,Tian Ruonan2,Li Lin1
1Shanxi Medical University School of Management, Taiyuan 030001,China
2Shanxi Medical University School of Humanities and Social Sciences, Taiyuan 030001,China
Download: PDF (2190 KB)   HTML ( 8
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] Opportunity, trust, and motivation are the three mechanisms influencing the formation of triadic closure in directed social networks. This paper explores the mechanisms affecting triadic closure in the pharmaceutical domain, aiming to provide foundations for drug knowledge discovery. [Methods] First, we used social network indices to measure the three mechanisms of opportunity, trust, and motivation. Then, we examined the Pearson correlation coefficient between these mechanisms and the triadic closure clustering and their numbers. Third, we introduced additional node attributes, network characteristics, and econometric methods to examine the relationships between node attributes and network characteristics/the three mechanisms. [Results] The node pairs for the opportunity and the clustering coefficient of the edges between them showed a strong positive correlation (r1>0.5). The node pairs for trust and motivation showed a strong positive correlation with the number of enclosed triads they belong to (r3, r5>0.5). The closeness centrality of node pairs negatively impacted the opportunity and trust,but a positive impact on motivation. The betweenness centrality and eigenvector centrality of node pairs positively impacted opportunity, trust, and motivation. The average path length of the network negatively affected the opportunity of node pairs but positively impacted their trust and motivation. [Limitations] More literature needs to be included for empirical analysis in the future. [Conclusions] The proposed method illustrates the circumstances of triadic closure formation for node pairs. Node attributes and network characteristics influence the three mechanisms, which provides a new direction for drug knowledge discovery.

Key wordsTriadic Closure      Clustering Coefficient      Correlation Coefficient     
Received: 25 August 2022      Published: 28 March 2023
ZTFLH:  G350  
Fund:National Natural Science Foundation of China(71804102);Program for the Philosophy and Social Sciences Research of Higher Learning Institutions of Shanxi(2019W040);Graduate Education Teaching Reform Classroom of Shanxi(2021YJJG115)
Corresponding Authors: Wu Shengnan,ORCID: 0000-0003-1509-5244, E-mail: vivian_sxmu@163.com。   

Cite this article:

Wu Shengnan, Sun Yidan, Pu Hongjun, Dong Jizong, Gao Jian, Tian Ruonan, Li Lin. Influencing Mechanisms of Triadic Closure in Pharmaceutical — Opportunity, Trust, and Motivation. Data Analysis and Knowledge Discovery, 2023, 7(10): 37-49.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2022.0895     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2023/V7/I10/37

Balanced Structure of Triadic Closure in the Drug Knowledge Network
Approach to Investigate the Mechanisms Affecting Triadic Closure Formation in the Pharmaceutical Domain
时间窗口 文献数量 主题词数量 连边数 网络全局聚类系数
1991-1993 12 60 672 0.627 3
1994-1996 25 111 1 249 0.474 3
1997-1999 53 188 2 178 0.301 1
2000-2002 100 303 4 438 0.290 3
2003-2005 113 361 5 711 0.278 5
2006-2008 182 521 8 629 0.2175
2009-2011 269 719 13 505 0.199 0
2012-2014 366 886 17 391 0.185 5
2015-2017 451 1 227 24 422 0.148 8
2018-2020 419 1 148 21 146 0.145 4
Network Characteristics and Calculation Results for Each Time Window(1991-2020)
Scatter Plot of the Correlation Between Opportunity, Trust Values, and Edge Clustering Coefficient
Scatter Plot of the Correlation Between Motivation Value and Edge Clustering Coefficient
时间窗口 节点对机会均值
o ( u i , u ) j ˉ
节点对机会与其边聚类系数的相关性r1 相关
显著性p1
1991-1993 0.495 8 0.996 6 0.000***
1994-1996 0.395 6 0.994 1 0.000***
1997-1999 0.300 8 0.998 0 0.000***
2000-2002 0.269 0 0.996 5 0.000***
2003-2005 0.274 7 0.997 7 0.000***
2006-2008 0.261 3 0.998 3 0.000***
2009-2011 0.227 2 0.997 8 0.000***
2012-2014 0.219 7 0.998 1 0.000***
2015-2017 0.207 0 0.998 4 0.000***
2018-2020 0.204 8 0.997 8 0.000***
Average Opportunity Value for Node Pairs and r1 Calculation Results
时间窗口 节点对信任均值
t ( u i , u ) j ˉ
节点对信任与其边聚集系数的相关性r2 相关显著性p2 节点对信任与节点对所在封闭三元组数目的相关性r3 相关显著性p3
1991-1993 14.393 2 0.189 9 0.000*** 0.921 6 0.000***
1994-1996 15.795 7 0.050 9 0.000*** 0.961 9 0.000***
1997-1999 18.173 9 0.047 3 0.000*** 0.972 3 0.000***
2000-2002 26.898 2 0.087 0 0.000*** 0.968 6 0.000***
2003-2005 30.553 6 0.063 8 0.000*** 0.963 3 0.000***
2006-2008 33.795 9 0.012 0 0.000*** 0.973 7 0.000***
2009-2011 43.135 8 0.044 5 0.000*** 0.973 2 0.000***
2012-2014 49.660 3 0.044 8 0.000*** 0.966 4 0.000***
2015-2017 47.245 5 0.021 7 0.000*** 0.972 9 0.000***
2018-2020 42.229 2 0.015 2 0.000*** 0.974 1 0.000***
Average Trust Value for Node Pairs and r2 r3 Calculation Results
时间窗口 节点对动机均值 m ( u i , u ) j ˉ 节点对动机与其边聚集系数的相关性r4 相关显著性p4 节点对动机与节点对所在封闭三元组数目的相关性r5 相关显著性p5
1991-1993 962.989 6 -0.089 5 0.000*** 0.845 6 0.000***
1994-1996 1 416.347 5 -0.223 1 0.000*** 0.863 3 0.000***
1997-1999 2 311.219 9 -0.178 8 0.000*** 0.919 5 0.000***
2000-2002 4 319.432 9 -0.111 6 0.000*** 0.910 7 0.000***
2003-2005 5 385.430 0 -0.130 1 0.000*** 0.904 7 0.000***
2006-2008 7 221.712 7 -0.165 5 0.000*** 0.923 2 0.000***
2009-2011 11 089.014 6 -0.118 2 0.000*** 0.930 5 0.000***
2012-2014 13 611.098 4 -0.116 1 0.000*** 0.923 4 0.000***
2015-2017 17 381.426 2 -0.111 0 0.000*** 0.933 6 0.000***
2018-2020 15 349.763 2 -0.115 8 0.000*** 0.937 1 0.000***
Average Motivation Value for Node Pairs and r4r5 Calculation Results
z _ o ( u i , u j )(机会) Coefficient(相关系数) t p
z _ c ( u i , u j ) -0.050 4 -8.32 0.000***
z _ b ( u i , u j ) 0.021 9 5.67 0.000***
z _ e ( u i , u j ) 0.098 4 12.26 0.000***
z _ a ( u i , u j ) -0.239 6 -74.89 0.000***
_cons(常数) -0.000 2 -0.07 0.948
Regression of Opportunity with Closeness Centrality, Betweenness Centrality, Eigenvector Centrality, and Average Path Length
z _ t ( u i , u j )(信任) Coefficient(相关系数) t p
z _ c ( u i , u j ) -0.038 4 -5.21 0.000***
z _ b ( u i , u j ) 0.445 1 94.65 0.000***
z _ e ( u i , u j ) 0.297 2 30.43 0.000***
z _ a ( u i , u j ) 0.225 3 57.85 0.000***
_cons(常数) 0.000 03 0.01 0.995
Regression of Trust with Closeness Centrality, Betweenness Centrality, Eigenvector Centrality, and Average Path Length
z _ m ( u i , u j )(动机) Coefficient(相关系数) t p
z _ c ( u i , u j ) 0.027 7 3.68 0.000***
z _ b ( u i , u j ) 0.546 5 113.69 0.000***
z _ e ( u i , u j ) 0.487 8 48.84 0.000***
z _ a ( u i , u j ) 0.267 6 67.21 0.000***
_cons(常数) 0.000 1 0.02 0.998
Regression of Motivation with Closeness Centrality, Betweenness Centrality, Eigenvector Centrality, and Average Path Length
[1] 张晗, 安欣宇, 刘春鹤. 基于多源语义知识图谱的药物知识发现:以药物重定位为实证[J]. 数据分析与知识发现, 2022, 6(7): 87-98.
[1] (Zhang Han, An Xinyu, Liu Chunhe. Building Multi-Source Semantic Knowledge Graph for Drug Repositioning[J]. Data Analysis and Knowledge Discovery, 2022, 6(7): 87-98.)
[2] 胡正银, 刘蕾蕾, 代冰, 等. 基于领域知识图谱的生命医学学科知识发现探析[J]. 数据分析与知识发现, 2020, 4(11): 1-14.
[2] (Hu Zhengyin, Liu Leilei, Dai Bing, et al. Discovering Subject Knowledge in Life and Medical Sciences with Knowledge Graph[J]. Data Analysis and Knowledge Discovery, 2020, 4(11): 1-14.)
[3] 郎宇翔, 杨艳萍. 基于文献的生物医学知识发现研究综述[J]. 医学信息学杂志, 2021, 42(10): 33-41, 47.
[3] (Lang Yuxiang, Yang Yanping. Review on Literature Based Discovery Researches in Biomedical Field[J]. Journal of Medical Informatics, 2021, 42(10): 33-41, 47.)
[4] Vicente-Gomila J M. The Contribution of Syntactic-Semantic Approach to the Search for Complementary Literatures for Scientific or Technical Discovery[J]. Scientometrics, 2014, 100(3): 659-673.
doi: 10.1007/s11192-014-1299-2
[5] 余黄樱子, 董庆兴, 张斌. 基于网络表示学习的疾病知识关联挖掘与预测方法研究[J]. 情报理论与实践, 2019, 42(12): 156-162.
doi: 10.16353/j.cnki.1000-7490.2019.12.025
[5] (Yu Huangyingzi, Dong Qingxing, Zhang Bin. Disease Knowledge Association Mining and Forecasting Based on Network Representation Learning[J]. Information Studies: Theory & Application, 2019, 42(12): 156-162.)
doi: 10.16353/j.cnki.1000-7490.2019.12.025
[6] 代冰, 胡正银. 基于文献的知识发现新近研究综述[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[6] (Dai Bing, Hu Zhengyin. Review of Studies on Literature-Based Discovery[J]. Data Analysis and Knowledge Discovery, 2021, 5(4): 1-12.)
[7] 陈澈. 基于复杂网络的2型糖尿病中医核心用药挖掘及其机制研究[D]. 北京: 北京中医药大学, 2018.
[7] (Chen Che. Research on Mining and Mechanism of TCM Core Drug Use of Type 2 Diabetes Based on Complex Network[D]. Beijing: Beijing University of Chinese Medicine, 2018.)
[8] 高杨, 张燕平, 钱付兰, 等. 基于三元闭包的节点相似性链路预测算法[J]. 计算机科学与探索, 2017, 11(5): 822-832.
doi: 10.3778/j.issn.1673-9418.1605039
[8] (Gao Yang, Zhang Yanping, Qian Fulan, et al. Link Prediction Algorithm Based on Node Similarity of Triadic Closure[J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(5) : 822-832.)
doi: 10.3778/j.issn.1673-9418.1605039
[9] Easley D, Kleinberg J. Networks, Crowds, and Markets: Reasoning about a Highly Connected World[M]. New York: Cambridge University Press, 2010.
[10] Romero D, Kleinberg J. The Directed Closure Process in Hybrid Social-Information Networks, with an Analysis of Link Formation on Twitter[C]// Proceedings of the 4th International AAAI Conference on Weblogs and Social Media. 2010: 138-145.
[11] Heider F. The Psychology of Interpersonal Relations[M]. New York: Psychology Press, 1958.
[12] 赵晋. 基于网络模型的药物重定位研究[D]. 西安: 西安电子科技大学, 2017.
[12] (Zhao Jin. Research on Drug Relocation Based on Network Model[D]. Xi’an: Xidian University, 2017.)
[13] He W J, Ai D X, Wu C H. A Recommender Model Based on Strong and Weak Social Ties: A Long-tail Distribution Perspective[J]. Expert Systems with Applications, 2021, 184:115483.
doi: 10.1016/j.eswa.2021.115483
[14] Ghosh G, Akki C B, Kasturi N. A PSO Based Investigation of Research Fields of Researchers[J]. Kybernetes, 2019, 49(6): 1767-1782.
doi: 10.1108/K-03-2019-0160
[15] 孙昊天, 杨良斌. 基于带权三元闭包的知识图谱的构建方法研究[J]. 情报杂志, 2019, 38(6): 168-173.
[15] (Sun Haotian, Yang Liangbin. Research on the Construction Method of Knowledge Graph Based on Weighted Triadic Closure[J]. Journal of Intelligence, 2019, 38(6): 168-173.)
[16] 孟永伟, 王晓英, 沈茜, 等. 基于三角形演化机制的社会网络模型研究[J]. 计算机工程与应用, 2016, 52(8): 111-114.
[16] (Meng Yongwei, Wang Xiaoying, Shen Qian, et al. Research on Triangle Evolving Mechanism Model of Social Network[J]. Computer Engineering and Applications, 2016, 52(8): 111-114.)
[17] 吴江, 张劲帆. 社会网络三元结构中关注影响力研究——以学生关系网络为例[J]. 现代图书情报技术, 2015(10): 72-80.
[17] (Wu Jiang, Zhang Jinfan. Research on Follow Influence of Triadic Structure in Social Network——Take Student Relation Network as an Example[J]. New Technology of Library and Information Service, 2015(10): 72-80.)
[18] 陈果, 胡昌平. 科研领域关键词网络的结构特征与启示——基于图情学科的实证研究[J]. 现代图书情报技术, 2014(7): 84-91.
[18] (Chen Guo, Hu Changping. Research on the Structural Features of Keyword Network of Scientific Research Areas: An Empirical Study of LIS[J]. New Technology of Library and Information Service, 2014(7): 84-91.)
[19] Huang H, Tang J, Liu L, et al. Triadic Closure Pattern Analysis and Prediction in Social Networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(12): 3374-3389.
doi: 10.1109/TKDE.2015.2453956
[20] 三元闭包与强弱联系[EB/OL].[2022-06-26]. https://blog.csdn.net/qq_34662278/article/details/88866688.
[21] Rapoport A. Spread of Information Through a Population with Socio-Structural Bias: I. Assumption of Transitivity[J]. The Bulletin of Mathematical Biophysics, 1953, 15(4): 523-533.
doi: 10.1007/BF02476440
[22] Nieto A, Davies T, Borrion H. “Offending with The Accomplices of My Accomplices”: Evidence and Implications Regarding Triadic Closure in Co-offending Networks[J]. Social Networks, 2022, 70: 325-333.
doi: 10.1016/j.socnet.2022.02.013
[23] Sharp C, Aldridge J, Medina J. Delinquent Youth Groups and Offending Behaviour: Findings from the 2004 Offending, Crime and Justice Survey[R]. Home Office Online Report, 2006.
[24] Milo R, Shen-Orr S, Itzkovitz S, et al. Network Motifs: Simple Building Blocks of Complex Networks[J]. Science, 2002, 298(5594): 824-827.
doi: 10.1126/science.298.5594.824 pmid: 12399590
[25] Pongsajapan R A. Liminal Entities: Identity, Governance, and Organizations on Twitter[D]. Washington, D.C.:Georgetown University, 2009.
[26] 万继红. 基于机会、 信任和动机的信息传模型构建及预测分析[D]. 成都: 西华大学, 2019.
[26] (Wan Jihong. Information Propagation Model Based on Opportunity, Trust and Motivation and Prediction Analysis[D]. Chengdu: Xihua University, 2019.)
[27] 孔德智. 基于动机、 信任和机会的个性化推荐方法研究[D]. 成都: 西华大学, 2019.
[27] (Kong Dezhi. Research on Personalized Recommendation Methods Based on Motivation, Trust and Chance[D]. Chengdu: Xihua University, 2019.)
[28] 李鑫. 面向行为的潜在好友判断方法研究[D]. 天津: 天津大学, 2018.
[28] (Li Xin. Research on Judgement Methods of Potential Friends Based on Behaviors[D]. Tianjin:Tianjin University, 2018.)
[29] 张亚辉. 随机图模型的聚类系数极限的研究[D]. 长春: 吉林大学, 2017.
[29] (Zhang Yahui. The Clustering Coefficients in Random Graph Models[D]. Changchun: Jilin University, 2017.)
[30] 赵菲, 余本国, 冀庆斌. 基于边聚类系数的谱聚类社区划分方法研究[J]. 华中师范大学学报(自然科学版), 2020, 54(1): 17-22.
[30] (Zhao Fei, Yu Benguo, Ji Qingbin. Spectral Clustering Community Partition Method Based on Edge Clustering Coefficient[J]. Journal of Central China Normal University(Natural Sciences), 2020, 54 (1): 17-22.)
[31] 吴胜男, 田若楠, 蒲虹君, 等. 基于社交媒体的医药领域关联主题预测方法研究[J]. 数据分析与知识发现, 2021, 5(12): 98-109.
[31] (Wu Shengnan, Tian Ruonan, Pu Hongjun, et al. Predicting Related Medical Topics from Social Media[J]. Data Analysis and Knowledge Discovery, 2021, 5(12): 98-109.)
[32] 滕广青. 基于频度演化的领域知识关联关系涌现[J]. 中国图书馆学报, 2018, 44(3):79-95.
[32] (Teng Guangqing. Emergence of Correlation in Domain Knowledge Based on Frequency Evolution[J]. Journal of Library Science in China, 2018, 44 (3): 79-95.)
[33] Lei Z S, Liu S T, Ge Y, et al. A High Conflict Evidence Fusion Method Based on Average Evidence and Focal Element Distance[J]. Electronics Optics & Control, 2021, 28(4): 6-10.
[34] Cohen J. Statistical Power Analysis for the Behavioral Sciences[M]. The 2nd Edition. Hillsdale, NJ: L. Erlbaum Associates, 1988.
[35] 雷鸣, 夏梦鸽, 汪雪锋, 等. 基于链路预测的协同药物组合推荐研究:面向疾病并发症诊疗[J]. 图书情报工作, 2021, 65(12): 122-129.
doi: 10.13266/j.issn.0252-3116.2021.12.012
[35] (Lei Ming, Xia Mengge, Wang Xuefeng, et al. Research on Drug Combination Recommendation Based on Link Prediction for Concurrent Diseases Treatment[J]. Library and Information Service, 2021, 65(12): 122-129.)
doi: 10.13266/j.issn.0252-3116.2021.12.012
[36] Newman M E J. The Mathematics of Networks[A]//Blume L E, Durlauf S N. The New Palgrave Encyclopedia of Economics[M]. Basingstoke, UK: Palgrave Macmillan, 2008: 1-8.
[37] 胡昌平, 陈果. 层次视角下概念知识网络的三元关系形态研究[J]. 图书情报工作, 2014, 58(4): 11-16.
[37] (Hu Changping, Chen Guo. Research on Ternary Relationship of the Conceptual Knowledge Network from the Hierarchy Perspective[J]. Library and Information Service, 2014, 58(4): 11-16.)
[38] 高洁, 马杰, 杨丽新. 利用TOPSIS算法对复杂网络的中心性重排的关键词演变探究[J]. 河北师范大学学报(自然科学版), 2021, 45(4): 426-432.
[38] (Gao Jie, Ma Jie, Yang Lixin. Research on the Keywords Evolution of Keywords in the Centrality Rearrangement of Complex Networks Using TOPSIS[J]. Journal of Hebei Normal University(Natural Science), 2021, 45(4): 426-432.)
[39] Albert R, Barabási A L. Statistical Mechanics of Complex Networks[J]. Reviews of Modern Physics, 2002, 74(1): 47-97.
doi: 10.1103/RevModPhys.74.47
[1] Xing Xiaoyun, Wei Jing. Study on the Dynamic Evolution of an OSN Structure and the Impacts on Word of Mouth[J]. 现代图书情报技术, 2011, 27(9): 60-65.
[2] Jing Jing, Hong Ying, Jiang Yuanyuan, Gao Xiaofeng. Study on Web Retrieval Query Fusion Based on Relevance Feedback[J]. 现代图书情报技术, 2011, 27(1): 57-62.
[3] Liu Honghong, An Haizhong, Gao Xiangyun. Research on Content Characteristics About Complex Network of Text[J]. 现代图书情报技术, 2011, 27(1): 69-73.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn