Please wait a minute...
Advanced Search
数据分析与知识发现  2022, Vol. 6 Issue (10): 1-8     https://doi.org/10.11925/infotech.2096-3467.2021.1464
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于时序漂移的潜在因子模型推荐方法*
丁浩1,2,胡广伟1,2(),王婷1,2,索炜3
1南京大学信息管理学院 南京 210023
2南京大学政务数据资源研究所 南京 210023
3北京航空航天大学自动化科学与电气工程学院 北京 100191
Recommendation Method for Potential Factor Model Based on Time Series Drift
Ding Hao1,2,Hu Guangwei1,2(),Wang Ting1,2,Suo Wei3
1School of Information Management, Nanjing University, Nanjing 210023, China
2Institute of Government Data Resources,Nanjing University,Nanjing 210023, China
3School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
全文: PDF (1361 KB)   HTML ( 54
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 提出一种基于时序漂移的潜在因子分解模型,捕捉用户兴趣趋势特征以提升推荐准确度。【方法】 结合用户偏好的时序动态演化以及用户过去行为对当前行为的影响关系进行建模,通过构建辅助矩阵捕捉用户两个时期之间演变关系,引入时间影响因子平衡当前和过去行为的影响。【结果】 在三个实验数据集中和基线方法对比测试,精确度最大提高40.02个百分点,最少提高3.75个百分点,平均提高19.81个百分点,证明了本算法的有效性。【局限】 由于兴趣漂移演变分析依赖用户历史数据,当历史数据量过于稀疏时需采用用户其他信息进行冷启动。【结论】 本文模型对兴趣波动特征的泛化能力更强、用户兴趣演变趋势分析和推荐更准确,能够有效提升企业推荐性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁浩
胡广伟
王婷
索炜
关键词 时间序列兴趣漂移潜在因子推荐系统矩阵分解    
Abstract

[Objective] This paper proposes a decomposition model for potential factors based on time series drift, aiming to capture the characteristics of changing user interests and improve the recommendation accuracy. [Methods] First, we built a model combining the temporal dynamic evolution of user preferences and the impacts of their previous behaviors on current ones. Then, we constructed an auxiliary matrix to capture the evolution of users. Finally, we introduced a time impact factor to balance the influence of current and past behaviors. [Results] We examined our model with three experimental datasets. Compared with the baseline method, the accuracy was improved by 40.02%, 3.75% and 19.81% on average. [Limitations] The evolution analysis of interest drift relies on historical data. When the amount of historical data is too sparse, other user information needs to be used for a cold start. [Conclusions] The proposed model has stronger generalization ability to process the characteristics of interest fluctuation, which accurately analyzes user interest evolution, and effectively improves the recommendation performance of enterprises.

Key wordsTime Series    Interest Drift    Latent Factor    Recommendation System    Matrix Decomposition
收稿日期: 2021-12-28      出版日期: 2022-11-16
ZTFLH:  TP391  
基金资助:国家社会科学基金重大项目(20&ZD154)
通讯作者: 胡广伟,ORCID:0000-0003-1303-363X      E-mail: hugw@nju.edu.cn
引用本文:   
丁浩, 胡广伟, 王婷, 索炜. 基于时序漂移的潜在因子模型推荐方法*[J]. 数据分析与知识发现, 2022, 6(10): 1-8.
Ding Hao, Hu Guangwei, Wang Ting, Suo Wei. Recommendation Method for Potential Factor Model Based on Time Series Drift. Data Analysis and Knowledge Discovery, 2022, 6(10): 1-8.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2021.1464      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2022/V6/I10/1
Fig.1  基于非负矩阵分解的潜在因子模型
Fig.2  基于时序漂移的潜在因子分解模型示意图
数据集 用户数量 项目数量 评分数量
Appliances 249 587 20 134 1 834 523
Books 578 858 61 379 4 159 480
VideoGames 421 256 35 880 2 535 441
Table 1  实验数据集规模描述
Fig.3  时间影响因子 α取值与精确度指标关系
Fig.4  TDMF模型与各基线模型在不同TopN中NDCG指标对比
Fig.5  TDMF模型与各基线模型在不同TopN中精确度指标对比
TimeSVD++ P@100 F1@100 NDCG@100 P@200 F1@200 NDCG@200 R@100 R@200
Appliances 0.359 2 0.341 6 0.311 9 0.339 7 0.332 8 0.350 5 0.325 6 0.326 2
Books 0.566 1 0.492 9 0.492 8 0.554 5 0.492 0 0.525 8 0.436 5 0.442 1
Video Games 0.502 7 0.501 9 0.426 3 0.500 8 0.496 5 0.451 4 0.501 2 0.492 2
TDMF P@100 F1@100 NDCG@100 P@200 F1@200 NDCG@200 R@100 R@200
Appliances 0.599 8 0.535 5 0.556 6 0.581 5 0.530 2 0.559 1 0.483 6 0.487 2
Books 0.831 5 0.807 9 0.816 6 0.768 5 0.778 7 0.828 9 0.785 6 0.7891
Video Games 0.779 0 0.729 3 0.751 1 0.765 2 0.728 6 0.748 3 0.685 6 0.695 4
TCMF P@100 F1@100 NDCG@100 P@200 F1@200 NDCG@200 R@100 R@200
Appliances 0.545 2 0.496 7 0.501 7 0.533 5 0.494 1 0.521 6 0.456 2 0.460 1
Books 0.801 3 0.779 9 0.785 6 0.754 3 0.757 8 0.797 9 0.759 6 0.761 3
Video Games 0.712 7 0.686 6 0.683 9 0.703 3 0.686 8 0.709 4 0.662 3 0.671 1
TMRevCo P@100 F1@100 NDCG@100 P@200 F1@200 NDCG@200 R@100 R@200
Appliances 0.513 9 0.461 3 0.470 6 0.508 7 0.464 7 0.488 9 0.418 5 0.427 7
Books 0.749 3 0.685 9 0.696 9 0.644 0 0.643 8 0.713 4 0.632 5 0.643 5
Video Games 0.696 7 0.646 0 0.672 6 0.691 1 0.652 6 0.686 7 0.602 1 0.618 2
Table 2  TDMF模型与各基线模型详细指标对比
[1] 丁浩, 李树青. 基于用户多类型兴趣波动趋势预测分析的个性化推荐方法[J]. 数据分析与知识发现, 2019, 3(11): 43-51.
[1] (Ding Hao, Li Shuqing. Personalized Recommendation Based on Predictive Analysis of User’s Interests[J]. Data Analysis and Knowledge Discovery, 2019, 3(11): 43-51.)
[2] 丁浩, 艾文华, 胡广伟, 等. 融合用户兴趣波动时序的个性化推荐模型[J]. 数据分析与知识发现, 2021, 5(11): 45-58.
[2] (Ding Hao, Ai Wenhua, Hu Guangwei, et al. A Personalized Recommendation Model with Time Series Fluctuation of User Interest[J]. Data Analysis and Knowledge Discovery, 2021, 5(11): 45-58.)
[3] 赵亮, 陈平华, 廖威平. 融合社交网络用户潜在因子的社会化推荐[J]. 计算机工程与应用, 2020, 56(24): 169-174.
doi: 10.3778/j.issn.1002-8331.1909-0339
[3] (Zhao Liang, Chen Pinghua, Liao Weiping. Social Recommendation Based on Latent Factors of Social Network Users[J]. Computer Engineering and Applications, 2020, 56(24): 169-174.)
doi: 10.3778/j.issn.1002-8331.1909-0339
[4] 李琳, 王培培, 谷鹏, 等. 基于LU分解和交替最小二乘法的分布式奇异值分解推荐算法[J]. 模式识别与人工智能, 2020, 33(1): 32-40.
doi: 10.16451/j.cnki.issn1003-6059.202001004
[4] (Li Lin, Wang Peipei, Gu Peng, et al. Distributed Singular Value Decomposition Recommendation Algorithm Based on LU Decomposition and Alternating Least Square[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(1): 32-40.)
doi: 10.16451/j.cnki.issn1003-6059.202001004
[5] Koren Y. Collaborative Filtering with Temporal Dynamics[J]. Communications of the ACM, 2010, 53(4):89-97.
[6] Zhang C Y, Wang K, Yu H K, et al. Latent Factor Transition for Dynamic Collaborative Filtering[C]// Proceedings of the 2014 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, 2014: 452-460.
[7] Rafailidis D, Kefalas P, Manolopoulos Y. Preference Dynamics with Multimodal User-Item Interactions in Social Media Recommendation[J]. Expert Systems with Applications, 2017, 74:11-18.
doi: 10.1016/j.eswa.2017.01.005
[8] 李丹阳, 甘明鑫. 基于多源信息融合的音乐推荐方法[J]. 数据分析与知识发现, 2021, 5(2):94-105.
[8] (Li Danyang, Gan Mingxin. Music Recommendation Method Based on Multi-source Information Fusion[J]. Data Analysis and Knowledge Discovery, 2021, 5(2):94-105.)
[9] Sun B S, Dong L Y. Dynamic Model Adaptive to User Interest Drift Based on Cluster and Nearest Neighbors[J]. IEEE Access, 2017, 5:1682-1691.
doi: 10.1109/ACCESS.2017.2669243
[10] Li T Y, Jin L L, Wu Z B, et al. Combined Recommendation Algorithm Based on Improved Similarity and Forgetting Curve[J]. Information, 2019, 10(4). https://doi.org/10.3390/info10040130.
[11] Luo X, Sun J P, Wang Z D, et al. Symmetric and Nonnegative Latent Factor Models for Undirected, High-Dimensional, and Sparse Networks in Industrial Applications[J]. IEEE Transactions on Industrial Informatics, 2017, 13(6):3098-3107.
doi: 10.1109/TII.2017.2724769
[12] Chua F C T, Oentaryo R J, Lim E P. Modeling Temporal Adoptions Using Dynamic Matrix Factorization[C]// Proceedings of the13th International Conference on Data Mining. IEEE, 2013.
[13] Liang X, Quan Y, Zhao S W, et al. Temporal Recommendation on Graphs via Long- and Short-term Preference Fusion[C]// Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2010:723-732.
[14] 朱振国, 刘民康, 赵凯旋. 基于用户联合相似度的推荐算法[J]. 计算机系统应用, 2018, 27(5): 126-132.
[14] (Zhu Zhenguo, Liu Minkang, Zhao Kaixuan. Recommendation Algorithm Based on Combined Similarity of Users[J]. Computer Systems & Applications, 2018, 27(5): 126-132.)
[15] Vaca C K, Mantrach A, Jaimes A, et al. A Time-based Collective Factorization for Topic Discovery and Monitoring in News[C]// Proceedings of the International Conference on World Wide Web. 2014:527-538.
[16] Li K K, Zhou X Z, Lin F, et al. Sparse Online Collaborative Filtering with Dynamic Regularization[J]. Information Sciences, 2019, 505:535-548.
doi: 10.1016/j.ins.2019.07.093
[17] Wangwatcharakul C, Wongthanavasu S. Dynamic Collaborative Filtering Based on User Preference Drift and Topic Evolution[J]. IEEE Access, 2020, 8: 86433-86447.
doi: 10.1109/ACCESS.2020.2993289
[18] Lee D D, Seung H S. Learning the Parts of Objects by Non-negative Matrix Factorization[J]. Nature, 1999, 401(675):788-791.
doi: 10.1038/44565
[19] Lee D D, Seung H S. Algorithms for Non-negative Matrix Factorization[J]. Advances in Neural Information Processing Systems, 2001, 13:556-562.
[20] McAuley J, Leskovec J. Hidden Factors and Hidden Topics: Understanding Rating Dimensions with Review Text[C]// Proceedings of the 7th ACM Conference on Recommender Systems. ACM, 2013:165-172.
[21] Wu T, Feng Y, Shang J X, et al. A Novel Recommendation Algorithm Incorporating Temporal Dynamics, Reviews and Item Correlation[J]. IEICE Transactions on Information and Systems, 2018, E101-D (8):2027-2034.
doi: 10.1587/transinf.2017EDP7387
[1] 张腾, 倪渊, 莫同, 吕学强. 弹幕视频的情感时间曲线聚类与传播效果*[J]. 数据分析与知识发现, 2022, 6(6): 32-45.
[2] 郑潇, 李树青, 张志旺. 基于评分数值分析的用户项目质量测度及其在深度推荐模型中的应用*[J]. 数据分析与知识发现, 2022, 6(4): 39-48.
[3] 李治, 孙锐, 姚羽轩, 李小欢. 基于实时事件侦测的兴趣点推荐系统研究*[J]. 数据分析与知识发现, 2022, 6(10): 114-127.
[4] 马莹雪,甘明鑫,肖克峻. 融合标签和内容信息的矩阵分解推荐方法*[J]. 数据分析与知识发现, 2021, 5(5): 71-82.
[5] 朱冬亮, 文奕, 万子琛. 基于知识图谱的推荐系统研究综述*[J]. 数据分析与知识发现, 2021, 5(12): 1-13.
[6] 丁浩, 艾文华, 胡广伟, 李树青, 索炜. 融合用户兴趣波动时序的个性化推荐模型*[J]. 数据分析与知识发现, 2021, 5(11): 45-58.
[7] 于硕,Hayat Dino Bedru,储新倍,袁宇渊,万良田,夏锋. 科学发现偶然性研究综述[J]. 数据分析与知识发现, 2021, 5(1): 16-35.
[8] 杨恒,王思丽,祝忠明,刘巍,王楠. 基于并行协同过滤算法的领域知识推荐模型研究*[J]. 数据分析与知识发现, 2020, 4(6): 15-21.
[9] 王根生,潘方正. 融合加权异构信息网络的矩阵分解推荐算法*[J]. 数据分析与知识发现, 2020, 4(12): 76-84.
[10] 颜靖华,侯苗苗. 基于LSTM网络的盗窃犯罪时间序列预测研究*[J]. 数据分析与知识发现, 2020, 4(11): 84-91.
[11] 温彦,马立健,曾庆田,郭文艳. 基于地理信息偏好修正和社交关系偏好隐式分析的POI推荐 *[J]. 数据分析与知识发现, 2019, 3(8): 30-39.
[12] 焦富森,李树青. 基于物品质量和用户评分修正的协同过滤推荐算法 *[J]. 数据分析与知识发现, 2019, 3(8): 62-67.
[13] 张怡文,张臣坤,杨安桔,计成睿,岳丽华. 基于条件型游走的四部图推荐方法*[J]. 数据分析与知识发现, 2019, 3(4): 117-125.
[14] 丁浩,李树青. 基于用户多类型兴趣波动趋势预测分析的个性化推荐方法 *[J]. 数据分析与知识发现, 2019, 3(11): 43-51.
[15] 刘东苏, 霍辰辉. 基于图像特征匹配的推荐模型研究*[J]. 数据分析与知识发现, 2018, 2(3): 49-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn