Please wait a minute...
Advanced Search
数据分析与知识发现  0, Vol. Issue (): 1-     https://doi.org/10.11925/infotech.2096-3467. 2020.0382
  本期目录 | 过刊浏览 | 高级检索 |
命名实体消歧研究进展综述
温萍梅,叶志炜,丁文健,刘颖,徐健
(中山大学资讯管理学院,广州 510006)
(中山大学图书馆,广州 510275)
Literature Review on the Progress of Named Entity Disambiguation Research
Wen Pingmei,Ye Zhiwei,Ding Wenjian,Liu Ying,Xu Jian
(School of Information management, Sun Yat-sen University, Guangzhou 510006)
(Sun Yat-sen University Library, Guangzhou 510275)
全文: PDF (947 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

[目的]调研近年来命名实体消歧领域的相关研究和资源,重点介绍命名实体消歧方法研究进展。

[文献范围]使用知网数据库、万方数据知识服务平台和EBSCO外文期刊平台检索命名实体消歧相关文献,共选择57篇代表性文献和电子资源。

[方法]本文从实体显著性、上下文相似度、实体关联度、深度学习和特殊标识资源五个角度对命名实体消歧的方法和思路进行归纳总结,并对可用的辅助知识库和开源工具以及国际评测会议进行梳理。

[结果]传统的方法经典易用,而近年来出现的深度学习等新方法,则明显地提升了消歧效果。有效的消歧模型往往整合了不同类型方法,以期达到最优消歧效果。

[局限]基于已有文献对各种方法的对比分析尚存在一定的主观性。

[结论]现有的命名实体消歧方法仍然处在发展阶段,未来可利用人工智能方法和领域资源进一步提升实体消歧效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 命名实体消歧  知识库  实体链接  聚类     
Abstract

[Objective] This paper reviews the related researches and resources in the field of named entity disambiguation (NED) focusing on the research progress of NED methods.

[Coverage] We reviewed a total of 57 papers and electronic resources from CNKI, Wanfang Data Knowledge Service Platform, and EBSCO.

[Methods] We first teases out the available thought and method for NED in terms of entity prominence, context similarity, entity relationship, deep learning and special identification resources. Next, some useful knowledge bases, open source tools as well as international conferences on NED evaluation are listed and discussed here.

[Results] Traditional methods are classic and easy to use, while new methods such as deep learning, which have emerged in recent years, have significantly improved the disambiguation effect. Effective disambiguation models often integrate different types of methods in order to achieve the optimal disambiguation effect.

[Limitations] There is still subjectivity in the comparative analysis of different methods based on the existing literature.

[Conclusions] The existing NED methods are still in the development stage. Artificial intelligence methods and field resources can be used to further improve the entity disambiguation effect in the future.

Key words Named Entity Disambiguation    Knowledge Base    Entity Linking    Cluster
     出版日期: 2020-06-22
ZTFLH:  TP393,G250  
引用本文:   
温萍梅, 叶志炜, 丁文健, 刘颖, 徐健. 命名实体消歧研究进展综述 [J]. 数据分析与知识发现, 0, (): 1-.
Wen Pingmei, Ye Zhiwei, Ding Wenjian, Liu Ying, Xu Jian. Literature Review on the Progress of Named Entity Disambiguation Research . Data Analysis and Knowledge Discovery, 0, (): 1-.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467. 2020.0382      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y0/V/I/1
[1] 周倩, 姚震, 孙博. 基于自适应k均值聚类的距离加权欠采样算法*[J]. 数据分析与知识发现, 2022, 6(5): 127-136.
[2] 郭蕾, 刘文菊, 王赜, 任悦强. 融合谱聚类和多因素影响的兴趣点推荐方法*[J]. 数据分析与知识发现, 2022, 6(5): 77-88.
[3] 聂卉, 吴晓燕, 林芸. 基于在线问诊记录的抑郁症病患群组划分与特征分析*[J]. 数据分析与知识发现, 2022, 6(2/3): 222-232.
[4] 钱旦敏, 曾婷婷, 常侍艺. 突发公共卫生事件下基于在线健康社区用户画像的用户角色研究*[J]. 数据分析与知识发现, 2022, 6(2/3): 93-104.
[5] 汪雪锋, 任惠超, 刘玉琴. 融合聚类信息的技术主题图可视化方法研究*[J]. 数据分析与知识发现, 2022, 6(1): 91-100.
[6] 王若琳, 牛振东, 蔺奇卡, 朱一凡, 邱萍, 陆浩, 刘东磊. 基于异质信息嵌入与RNN聚类参数预测的作者姓名消歧方法*[J]. 数据分析与知识发现, 2021, 5(8): 13-24.
[7] 王晰巍,贾若男,韦雅楠,张柳. 多维度社交网络舆情用户群体聚类分析方法研究*[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[8] 卢利农,祝忠明,张旺强,王小春. 基于Lingo3G聚类算法的机构知识库跨库知识整合与知识指纹服务实现[J]. 数据分析与知识发现, 2021, 5(5): 127-132.
[9] 张梦瑶, 朱广丽, 张顺香, 张标. 基于情感分析的微博热点话题用户群体划分模型 *[J]. 数据分析与知识发现, 2021, 5(2): 43-49.
[10] 丁浩, 艾文华, 胡广伟, 李树青, 索炜. 融合用户兴趣波动时序的个性化推荐模型*[J]. 数据分析与知识发现, 2021, 5(11): 45-58.
[11] 杨辰, 陈晓虹, 王楚涵, 刘婷婷. 基于用户细粒度属性偏好聚类的推荐策略*[J]. 数据分析与知识发现, 2021, 5(10): 94-102.
[12] 于丰畅,程齐凯,陆伟. 基于几何对象聚类的学术文献图表定位研究[J]. 数据分析与知识发现, 2021, 5(1): 140-149.
[13] 温萍梅,叶志炜,丁文健,刘颖,徐健. 命名实体消歧研究进展综述*[J]. 数据分析与知识发现, 2020, 4(9): 15-25.
[14] 邬金鸣,侯跃芳,崔雷. 基于医学主题词标引规则的词共现聚类分析结果自动判读和表达的研究[J]. 数据分析与知识发现, 2020, 4(9): 133-144.
[15] 席运江, 杜蝶蝶, 廖晓, 仉学红. 基于超网络的企业微博用户聚类研究及特征分析*[J]. 数据分析与知识发现, 2020, 4(8): 107-118.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn