Please wait a minute...
Advanced Search
数据分析与知识发现  2023, Vol. 7 Issue (7): 74-88     https://doi.org/10.11925/infotech.2096-3467.2022.0718
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于优化后集成学习模型的特征选择与疾病高效预警研究——以老年抑郁焦虑为例
严颖1,黄奇1,2(),李娜1
1南京大学信息管理学院 南京 210023
2南京大学国家信息资源管理南京研究基地 南京 210093
Feature Selection and Efficient Disease Early Warning Based on Optimized Ensemble Learning Model:Case Study of Geriatric Depression and Anxiety
Yan Ying1,Huang Qi1,2(),Li Na1
1School of Information Management, Nanjing University, Nanjing 210023, China
2Nanjing Research Base of National Information Management, Nanjing University, Nanjing 210093, China
全文: PDF (1655 KB)   HTML ( 17
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 通过合理选择关键的疾病风险变量,使疾病预测模型兼顾计算效率和预测精度,为公共卫生相关部门实现疾病高效预警提供参考。【方法】 使用基于集成学习的随机森林和XGBoost模型学习高维的疾病风险变量数据进行疾病预测,使两种模型自主选择对其预测作出贡献的疾病风险变量子集。为使随机森林和XGBoost模型选择出具有高预测精度的关键变量子集,从最大程度提升模型泛化能力的角度出发,深入分析两种模型的集成方式,通过针对性的超参数调整,利用交叉验证,不断迭代随机森林模型的袋外数据误判率均值,收敛XGBoost模型在不同子训练集上的损失曲线,为两种模型分别提出独特的模型优化方案,释放其疾病预测性能。【结果】 在老年抑郁焦虑患病数据集上的实验表明,优化后随机森林和优化后XGBoost模型具有非常优异且接近的疾病预测性能,分别实现了88.6%和89.7%的预测准确率,以及0.936和0.940的AUC。但通过优化后模型的特征选择,XGBoost模型的结构更为简单高效,从54个老年抑郁焦虑风险变量中选择较少的17个关键变量,且实现了较好的疾病预测效果,准确率为85.8%,AUC为0.917。【局限】 未使用最新老年队列数据进行实验;需进一步检验模型在复杂异构数据环境中的适应性。【结论】 优化后XGBoost模型的特征选择效果更好,可提高疾病预警效率,为公共卫生管理提供决策支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
严颖
黄奇
李娜
关键词 集成学习超参数调优特征选择疾病高效预警    
Abstract

[Objective] This paper makes disease prediction models balance computational efficiency and prediction accuracy by selecting key disease risk variables, aiming to help public health departments achieve efficient disease early warning. [Methods] We used ensemble learning-based Random Forest and XGBoost models to learn high-dimensional disease risk variable data for disease prediction. The models autonomously select subsets of variables that contribute to their prediction. To ensure that the selected subset has high prediction accuracy, we analyze the ensemble strategy of Random Forest and XGBoost. By adjusting hyperparameters and cross-validating, we improved the out-of-bag error rate of the Random Forest model iteratively and converged the loss curve of the XGBoost model on different sub-training sets. Finally, we proposed unique optimization solutions for each model to enhance their disease prediction performance. [Results] We examined the optimized models with the dataset of geriatric depression and anxiety. They exhibited excellent and comparable disease prediction performance, achieving prediction accuracies of 88.6% and 89.7%, as well as AUC values of 0.936 and 0.940, respectively. However, the XGBoost model had a simpler and more efficient structure with the optimized feature selection. It selected only 17 key variables out of 54 geriatric depression and anxiety risk variables, achieving a prediction accuracy of 85.8% and an AUC of 0.917. [Limitations] We did not utilize the latest geriatric cohort data for experimentation. More research is needed to test the adaptability of models in complex and heterogenous data environments. [Conclusions] The feature selection effect of the optimized XGBoost model is superior in improving the efficiency of disease early warning and providing decision support for public health management.

Key wordsEnsemble Learning    Hyperparameter Tuning    Feature Selection    Efficient Disease Warning
收稿日期: 2022-07-18      出版日期: 2023-09-07
ZTFLH:  G35  
通讯作者: 黄奇,ORCID:0000-0003-2394-148X, E-mail: huangqi@nju.edu.cn。   
引用本文:   
严颖, 黄奇, 李娜. 基于优化后集成学习模型的特征选择与疾病高效预警研究——以老年抑郁焦虑为例[J]. 数据分析与知识发现, 2023, 7(7): 74-88.
Yan Ying, Huang Qi, Li Na. Feature Selection and Efficient Disease Early Warning Based on Optimized Ensemble Learning Model:Case Study of Geriatric Depression and Anxiety. Data Analysis and Knowledge Discovery, 2023, 7(7): 74-88.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022.0718      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2023/V7/I7/74
模型 特点 在不同疾病预测任务中的AUC
丙肝[9] 肾炎[10] 心血管疾病[11] 精神病[10] 阿尔茨海默症[12]
NB 学习患病数据中的联合概率预测疾病的发生。偏好分类变量受限于数据中的样本分布独立假设和变量间相关性[13] 0.896 0.531 0.708 0.560 -
LR 线性拟合疾病数据中样本点以估计个体患病概率,适用于线性数据[14] 0.921 0.675 0.700 0.694 0.746
DT 以变量为节点将疾病数据组织为树状结构,用多层if-then判断个体患病风险。受限于数据中变量关联性[6] 0.953 - 0.649 - 0.797
K近邻 根据个体附近样本的患病情况判断其患病风险。对数据容错率低,也难以处理多维疾病数据[15] 0.963 - 0.600 - -
SVM 将疾病数据中的样本映射至同一特征空间,用一个超平面最大程度对其划分,根据个体所处区域判断其患病风险。考虑到区分度,不适用于大规模数据[13] 0.972 0.511 0.465 0.497 0.920
Table 1  主要机器学习模型的特点及它们在不同疾病预测任务中的性能表现
方法 相关研究 受限于 原因
网格搜索&
交叉验证
Zhang等[19];徐良辰等[20];Zhang等[21]
Putatunda等[22];Ogunleye等[23]
未考虑或仅考虑少量常见超参数对模型预测性能的影响 集成学习模型超参数众多,联合遍历涉及的计算复杂度高
贝叶斯优化 Wang等[24];梅雪峰[25];Sun[26];Budholiya等[27] 易陷入局部最优 未能掌握模型预测性能的全局变化趋势
粒子群优化 Qin等[28];Sun等[29]
灰狼优化 Sun等[29]
遗传算法 Dhar[30] 随机性 涉及经验知识;结果较依赖初始状态的优劣
Table 2  集成学习模型优化方法
Fig.1  随机森林概念
超参数 描述 默认值 一般取值范围
max_depth 模型中树的最大深度 6 -
n_estimators 模型集成的树的数量 10 -
eta 模型学习率 0.3 [0,1]
gamma 在树的叶节点上进行进一步分枝所需的最小损失下降 0 [0,50]
subsample 创建每棵树时在样本数据中随机抽样的比例 1 (0,1]
colsample_bytree 创建每棵树时随机抽样的变量占样本中变量的比例 1 (0,1]
Table 3  XGBoost模型中需要调整的针对性超参数
Fig.2  样本数据观察值组成
风险因素 代表文献 主要观点
性别 Lin等[37];Mulat等[38];寇小君等[39] 抑郁在女性中更常见;在对中国社区老年人群的焦虑情况调查中发现了性别差异
年龄 Mulat等[38] 抑郁和焦虑出现的频率随着年龄的增长而增加
压力源 Yuziani等[40] 压力源的存在与心理问题出现有关。对于老年人,压力一般来自于近期遭遇的负面生活事件,如摔倒或晕眩等
家庭关系 Byeon[41] 家庭关系融洽的老年人出现心理问题的概率更小
婚姻状况 Mulat等[38];Hossain等[42];Pan等[43] 已婚老年人的抑郁焦虑患病率比丧偶、离婚或分居的老年人更低
生活满意度 李磊等[44];汪苗等[45] 生活满意度是影响老年人抑郁焦虑的重要因素
孤独感 Ma等[46] 孤独感对老年人群的心理健康有显著的负面影响
社会支持 梁蔚蔚等[47] 充足的社会支持对老年人不良情绪的出现具有缓冲作用
健康状况 邓学学等[48]
de Oliveira等[49]
本身患有疾病的老年人群更易出现抑郁焦虑等不良情绪;较高的活力水平和体育活动是老年人对抗心理问题的有效策略
经济状况 Lin等[37] 家庭收入水平与老年人的抑郁焦虑之间显著相关
睡眠问题 Lin等[37];Zhang等[50] 睡眠情况和老年心理疾病之间的关系很复杂,睡眠问题可能对老年人的情绪产生负面影响;反之,抑郁和焦虑也可能催生睡眠问题
认知水平 Mukku等[51] 抑郁症和认知障碍通常在老年人群中并存
吸烟 Bhandari等[52];Xazratovich[53] 无论是否达到尼古丁成瘾水平,吸烟都可能影响老年人群出现抑郁焦虑
Table 4  老年抑郁焦虑风险因素
变量 描述 变量 描述 变量 描述
sex 性别 hlthr 自评健康 oapen 是否领取养老金
age 年龄 tmbed 卧床时间/min insup 是否领取补贴
agegroup 年龄组 tmasl 睡眠时间/min hben 是否有银行利息或租金收入
x_job 当前是否就业 sllat 睡眠开始潜伏期/min altinc 是否有额外收入来源
class_1 社会层级 insom 出现睡眠问题的频率 rs200/350 筹集200镑(T1/T2)/350
镑(T3)的难度
mstat 婚姻状况 hypfq 服用安眠药频率 finsat 对当前财务状况是否满意
x_cohb 是否独居 sleep 是否有睡眠问题 minwlk 每周步行时间/min
hltidx 健康指数 slpsev 睡眠问题是否严重 minshp 每周购物时间/min
hbound 是否居家无法外出 qfall 近一年内是否摔倒 t_out 每周户外活动时间/min
x_mobi 是否行动灵活 smoke_do 是否抽烟 t_indr 每周室内活动时间/min
blind 是否眼盲 ses 社会参与分数 t_rlx 每周休闲活动时间/min
hearg 是否有听力障碍 outab 是否能根据意愿自由外出 t_efft 力量得分
hi_bp 是否有高血压 frend 居住在同一地区的朋友数量 t_bend 柔韧度得分
x_illdis 是否有长期困扰的疾病 fhelp 当有需要时能提供帮助的朋友数量 mxgrip 最大握力/kg
arthp 是否夜间关节疼痛/早晨关节僵硬 lonely 感受到孤独的频率 mxspan 最大步长/cm
pndex 日常活动受关节疼痛/僵硬影响的
程度
visit 家人/朋友最近一次拜访时间 mxflex 肩部活动最大角度
presc 是否服用其他处方药 socialsup 近期接受的社会支持 wgtcat 体重分组(根据BMI指数)
n_drug 服用的处方药数量 lsi 生活满意度 cape 认知水平
Table 5  样本变量
指标 描述
真阳性(TP 实际患有疾病,预测结果也显示患有疾病
假阴性(FN 实际患有疾病,但预测结果显示正常
假阳性(FP 实际正常,但预测结果显示患有疾病
真阴性(TN 实际正常,预测结果也显示正常
准确率 TP+TN)/(TP+FN+FP+TN
召回率 TP/(TP+FN
精确率 TP/(TP+FP
F1指数 2×(召回率 × 精确率)/(召回率 + 精确率)
Table 6  模型评估指标
Fig.3  XGBoost模型在集成决策树过程中的损失
Fig.4  针对性超参数调整前后XGBoost模型的损失
超参数 参数值
max_depth 2
n_estimators 14
eta 0.4
gamma 5
subsample 1
colsample_bytree 0.3
Table 7  XGBoost模型相关超参数的最终设定
Fig.5  优化后随机森林和XGBoost模型的各项指标
Fig.6  优化后随机森林和XGBoost模型的AUC
Fig.7  优化后随机森林模型的特征选择
Fig.8  优化后XGBoost模型的特征选择
模型信息 A组:特征选择前 特征选择后
B组:未优化模型预测性能 C组:已优化模型预测性能
针对性超参数设定 n_estimators:14; max_depth:2; eta:0.4; gamma:5; subsample:1;
colsample_bytree:0.3
n_estimators:14; max_depth:2; eta:0.4; gamma:5; subsample:1; colsample_bytree:0.3 n_estimators:12; max_depth:2; eta:0.5; gamma:3; subsample:1; colsample_bytree:0.3
变量数 54 17 17
准确率 89.7% 85.0%(A→B:4.7个百分点↓) 85.8%(A→C:3.9个百分点↓)
AUC 0.940 0.917(A→B:0.023↓) 0.917(A→C:0.023↓)
精确率 84.8% 88.3% 88.8%
召回率 76.5% 59.6% 62.3%
F1指数 80.4% 71.2% 73.2%
Table 8  特征选择前后XGBoost模型的疾病预测效果
[1] 王萍, 牟冬梅, 高和璇, 等. 基于传染病监测数据的危机探测研究[J]. 情报学报, 2019, 38(5): 492-499.
[1] (Wang Ping, Mu Dongmei, Gao Hexuan, et al. Research on Crisis Detection in Infectious Disease Surveillance Data[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(5): 492-499.)
[2] 王敏虾. 基于逻辑回归关联规则的疾病预警模型[D]. 济南: 山东大学, 2016.
[2] (Wang Minxia. Disease Early Warning Model Based on Logistic Regression Association Rules[D]. Jinan: Shandong University, 2016.)
[3] Liu H, Motoda H, Setiono R, et al. Feature Selection: An Ever Evolving Frontier in Data Mining[C]// Proceedings of the 4th Workshop on Feature Selection in Data Mining. 2010: 4-13.
[4] Aziz N A A, Maarof M A, Zainal A. Hate Speech and Offensive Language Detection: A New Feature Set with Filter-Embedded Combining Feature Selection[C]// Proceedings of the 3rd International Cyber Resilience Conference. IEEE, 2021.
[5] 张文德, 程涵, 刘田, 等. 随机森林在高校信息碎片化整合中的应用[J]. 图书情报工作, 2018, 62(7): 119-124.
doi: 10.13266/j.issn.0252-3116.2018.07.014
[5] (Zhang Wende, Cheng Han, Liu Tian, et al. Application of Random Forest in the Fragmented Integration of University Information[J]. Library and Information Service, 2018, 62(7): 119-124.)
doi: 10.13266/j.issn.0252-3116.2018.07.014
[6] 张燕. 基于决策树的老年心血管疾病住院患者衰弱预测模型构建[D]. 汕头: 汕头大学, 2021.
[6] (Zhang Yan. Construction of the Debilitating Prediction Model for Elderly Inpatients with Cardiovascular Diseases Based on Decision Tree[D]. Shantou: Shantou University, 2021.)
[7] Khanam J J, Foo S Y. A Comparison of Machine Learning Algorithms for Diabetes Prediction[J]. ICT Express, 2021, 7(4): 432-439.
doi: 10.1016/j.icte.2021.02.004
[8] Kwekha-Rashid A S, Abduljabbar H N, Alhayani B. Coronavirus Disease (COVID-19) Cases Analysis Using Machine-Learning Applications[J]. Applied Nanoscience, 2023, 13(3): 2013-2025.
doi: 10.1007/s13204-021-01868-7
[9] Safdari R, Deghatipour A, Gholamzadeh M, et al. Applying Data Mining Techniques to Classify Patients with Suspected Hepatitis C Virus Infection[J]. Intelligent Medicine, 2022, 2(4): 193-198.
doi: 10.1016/j.imed.2021.12.003
[10] Dagliati A, Marini S, Sacchi L, et al. Machine Learning Methods to Predict Diabetes Complications[J]. Journal of Diabetes Science and Technology, 2018, 12(2): 295-302.
doi: 10.1177/1932296817706375 pmid: 28494618
[11] Quesada J A, Lopez-Pineda A, Gil-Guillén V F, et al. Machine Learning to Predict Cardiovascular Risk[J]. International Journal of Clinical Practice, 2019, 73(10): e13389.
[12] Bari Antor M, Jamil A H M S, Mamtaz M, et al. A Comparative Analysis of Machine Learning Algorithms to Predict Alzheimer's Disease[J]. Journal of Healthcare Engineering, 2021, 2021: 9917919.
[13] Golpour P, Ghayour-Mobarhan M, Saki A, et al. Comparison of Support Vector Machine, Naïve Bayes and Logistic Regression for Assessing the Necessity for Coronary Angiography[J]. International Journal of Environmental Research and Public Health, 2020, 17(18): 6449.
doi: 10.3390/ijerph17186449
[14] Schober P, Vetter T R. Logistic Regression in Medical Research[J]. Anesthesia and Analgesia, 2021, 132(2): 365-366.
doi: 10.1213/ANE.0000000000005247 pmid: 33449558
[15] Xing W C, Bei Y L. Medical Health Big Data Classification Based on KNN Classification Algorithm[J]. IEEE Access, 2019, 8: 28808-28819.
doi: 10.1109/Access.6287639
[16] Sagi O, Rokach L. Ensemble Learning: A Survey[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8(4): e1249.
doi: 10.1002/widm.2018.8.issue-4
[17] 曾子明, 王婧. 基于LDA和随机森林的微博谣言识别研究——以2016年雾霾谣言为例[J]. 情报学报, 2019, 38(1): 89-96.
[17] (Zeng Ziming, Wang Jing. Research on Microblog Rumor Identification Based on LDA and Random Forest[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(1): 89-96.)
[18] Shafi A S M, Rahman M B, Anwar T, et al. Classification of Brain Tumors and Auto-Immune Disease Using Ensemble Learning[J]. Informatics in Medicine Unlocked, 2021, 24: 100608.
doi: 10.1016/j.imu.2021.100608
[19] Zhang Y L, Feng T, Wang S D, et al. A Novel XGBoost Method to Identify Cancer Tissue-of-Origin Based on Copy Number Variations[J]. Frontiers in Genetics, 2020, 11: 585029.
doi: 10.3389/fgene.2020.585029
[20] 徐良辰, 郭崇慧. 基于集成学习的胃癌生存预测模型研究[J]. 数据分析与知识发现, 2021, 5(8): 86-99.
[20] (Xu Liangchen, Guo Chonghui. Predicting Survival Rates for Gastric Cancer Based on Ensemble Learning[J]. Data Analysis and Knowledge Discovery, 2021, 5(8): 86-99.)
[21] Zhang Y Y, Wang S J, Hermann A, et al. Development and Validation of a Machine Learning Algorithm for Predicting the Risk of Postpartum Depression among Pregnant Women[J]. Journal of Affective Disorders, 2021, 279: 1-8.
doi: 10.1016/j.jad.2020.09.113 pmid: 33035748
[22] Putatunda S, Rama K. A Comparative Analysis of Hyperopt as Against Other Approaches for Hyper-Parameter Optimization of XGBoost[C]// Proceedings of the 2018 International Conference on Signal Processing and Machine Learning. 2018: 6-10.
[23] Ogunleye A, Wang Q G. XGBoost Model for Chronic Kidney Disease Diagnosis[J]. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2020, 17(6): 2131-2140.
doi: 10.1109/TCBB.8857
[24] Wang Y, Ni X S. A XGBoost Risk Model via Feature Selection and Bayesian Hyper-Parameter Optimization[OL]. arXiv Preprint, arXiv:1901.08433.
[25] 梅雪峰. 基于代价敏感的分类集成学习算法研究[D]. 南京: 南京邮电大学, 2021.
[25] (Mei Xuefeng. Research on Classification Ensemble Learning Algorithm Based on Cost Sensitivity[D]. Nanjing: Nanjing University of Posts and Telecommunications, 2021.)
[26] Sun L Y. Application and Improvement of XGBoost Algorithm Based on Multiple Parameter Optimization Strategy[C]// Proceedings of the 5th International Conference on Mechanical, Control and Computer Engineering. 2020: 1822-1825.
[27] Budholiya K, Shrivastava S K, Sharma V. An Optimized XGBoost Based Diagnostic System for Effective Prediction of Heart Disease[J]. Journal of King Saud University-Computer and Information Sciences, 2022, 34(7): 4514-4523.
doi: 10.1016/j.jksuci.2020.10.013
[28] Qin C, Zhang Y F, Bao F X, et al. XGBoost Optimized by Adaptive Particle Swarm Optimization for Credit Scoring[J]. Mathematical Problems in Engineering, 2021, 2021: 1-18.
[29] Sun S L, Jin F, Li H T, et al. A New Hybrid Optimization Ensemble Learning Approach for Carbon Price Forecasting[J]. Applied Mathematical Modelling, 2021, 97: 182-205.
doi: 10.1016/j.apm.2021.03.020
[30] Dhar J. Multistage Ensemble Learning Model with Weighted Voting and Genetic Algorithm Optimization Strategy for Detecting Chronic Obstructive Pulmonary Disease[J]. IEEE Access, 2021, 9: 48640-48657.
doi: 10.1109/ACCESS.2021.3067949
[31] Syahrani I M. Comparation Analysis of Ensemble Technique with Boosting (XGBoost) and Bagging (RandomForest) for Classify Splice Junction DNA Sequence Category[J]. Jurnal Penelitian Pos dan Informatika, 2019, 9(1): 27-36.
[32] Chen T Q, Guestrin C. XGBoost: A Scalable Tree Boosting System[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016: 785-794.
[33] Geisser S. The Predictive Sample Reuse Method with Applications[J]. Journal of the American Statistical Association, 1975, 70(350): 320-328.
doi: 10.1080/01621459.1975.10479865
[34] Morgan K. The Nottingham Longitudinal Study of Activity and Ageing: A Methodological Overview[J]. Age and Ageing, 1998, 27(suppl_3): 5-11.
[35] Gotlib I H, Joormann J. Cognition and Depression: Current Status and Future Directions[J]. Annual Review of Clinical Psychology, 2010, 6: 285 -312.
doi: 10.1146/annurev.clinpsy.121208.131305 pmid: 20192795
[36] Bedford A, Foulds G A, Sheffield B F. A New Personal Disturbance Scale (DSSI/sAD)[J]. British Journal of Social and Clinical Psychology, 1976, 15(4): 387-394.
doi: 10.1111/j.2044-8260.1976.tb00050.x pmid: 1000147
[37] Lin H Y, Jin M D, Liu Q, et al. Gender-Specific Prevalence and Influencing Factors of Depression in Elderly in Rural China: A Cross-Sectional Study[J]. Journal of Affective Disorders, 2021, 288: 99-106.
doi: 10.1016/j.jad.2021.03.078 pmid: 33848754
[38] Mulat N, Gutema H, Wassie G T. Prevalence of Depression and Associated Factors among Elderly People in Womberma District, North-West, Ethiopia[J]. BMC Psychiatry, 2021, 21(1): 136.
doi: 10.1186/s12888-021-03145-x pmid: 33685419
[39] 寇小君, 龚传鹏, 刘修军, 等. 武汉市社区老年人群焦虑、抑郁现况及影响因素[J]. 中国老年学杂志, 2018, 38(10): 2529-2531.
[39] (Kou Xiaojun, Gong Chuanpeng, Liu Xiujun, et al. Prevalence and Influencing Factors of Anxiety and Depression among the Elderly in Wuhan Community[J]. Chinese Journal of Gerontology, 2018, 38(10): 2529-2531.)
[40] Yuziani, Maulina M. The Correlation Between Stress Level and Degree of Depression in the Elderly at a Nursing Home in Lhokseumawe in the Year 2017[C]// Proceedings of MICoMS 2017. 2018: 497-502.
[41] Byeon H. Exploring Factors for Predicting Anxiety Disorders of the Elderly Living Alone in South Korea Using Interpretable Machine Learning: A Population-Based Study[J]. International Journal of Environmental Research and Public Health, 2021, 18(14): 7625.
doi: 10.3390/ijerph18147625
[42] Hossain B, Yadav P K, Nagargoje V P, et al. Association Between Physical Limitations and Depressive Symptoms among Indian Elderly: Marital Status as a Moderator[J]. BMC Psychiatry, 2021, 21(1): 573.
doi: 10.1186/s12888-021-03587-3 pmid: 34781925
[43] Pan L, Li L, Peng H Y, et al. Association of Depressive Symptoms with Marital Status among the Middle-Aged and Elderly in Rural China-Serial Mediating Effects of Sleep Time, Pain and Life Satisfaction[J]. Journal of Affective Disorders, 2022, 303: 52-57.
doi: 10.1016/j.jad.2022.01.111 pmid: 35124113
[44] 李磊, 马孟园, 彭红叶, 等. 中国农村地区老年人抑郁症状发生情况及影响因素研究[J]. 中国全科医学, 2021, 24(27): 3432-3438.
doi: 10.12114/j.issn.1007-9572.2021.00.577
[44] (Li Lei, Ma Mengyuan, Peng Hongye, et al. Prevalence and Associated Factors of Depressive Symptoms in China's Rural Elderly[J]. Chinese General Practice, 2021, 24(27): 3432-3438.)
doi: 10.12114/j.issn.1007-9572.2021.00.577
[45] 汪苗, 潘庆. 我国老年人焦虑状况城乡差异及影响因素分析[J]. 中国全科医学, 2021, 24(31): 3963-3970.
doi: 10.12114/j.issn.1007-9572.2021.00.294
[45] (Wang Miao, Pan Qing. The Rural-Urban Differences and Influencing Factors in the Anxiety Symptoms of Chinese Elderly People[J]. Chinese General Practice, 2021, 24(31): 3963-3970.)
doi: 10.12114/j.issn.1007-9572.2021.00.294
[46] Ma X M, Zhang X F, Guo X T, et al. Examining the Role of ICT Usage in Loneliness Perception and Mental Health of the Elderly in China[J]. Technology in Society, 2021, 67: 101718.
doi: 10.1016/j.techsoc.2021.101718
[47] 梁蔚蔚, 李娟, 刘园园, 等. 北京及广州社区老年人抑郁焦虑水平与社会支持相关研究[J]. 阿尔茨海默病及相关病杂志, 2020, 3(2): 129-135.
doi: 10.3969/j.issn.2096-5516.2020.02.008
[47] (Liang Weiwei, Li Juan, Liu Yuanyuan, et al. Correlation Between Depression, Anxiety and Social Support Among the Elderly in Beijing and Guangzhou Communities[J]. Chinese Journal of Alzheimer's Disease and Related Disorders, 2020, 3(2): 129-135.)
doi: 10.3969/j.issn.2096-5516.2020.02.008
[48] 邓学学, 方荣华, 毛艳, 等. 综合医院全科病房老年住院患者的焦虑抑郁状况及影响因素研究[J]. 中国全科医学, 2020, 23(1): 96-100.
doi: 10.12114/j.issn.1007-9572.2019.00.603
[48] (Deng Xuexue, Fang Ronghua, Mao Yan, et al. Prevalence and Influencing Factors of Anxiety and Depression in Hospitalized Elderly Patients in the General Medicine Ward of a General Hospital[J]. Chinese General Practice, 2020, 23(1): 96-100.)
doi: 10.12114/j.issn.1007-9572.2019.00.603
[49] de Oliveira L D S S C B, Souza E C, Rodrigues R A S, et al. The Effects of Physical Activity on Anxiety, Depression, and Quality of Life in Elderly People Living in the Community[J]. Trends in Psychiatry and Psychotherapy, 2019, 41(1): 36-42.
doi: S2237-60892019000100005 pmid: 30994779
[50] Zhang M M, Ma Y, Du L T, et al. Sleep Disorders and Non-Sleep Circadian Disorders Predict Depression: A Systematic Review and Meta-Analysis of Longitudinal Studies[J]. Neuroscience & Biobehavioral Reviews, 2022, 134: 104532.
doi: 10.1016/j.neubiorev.2022.104532
[51] Mukku S S R, Dahale A B, Muniswamy N R, et al. Geriatric Depression and Cognitive Impairment—An Update[J]. Indian Journal of Psychological Medicine, 2021, 43(4): 286-293.
doi: 10.1177/0253717620981556
[52] Bhandari P, Paswan B. Lifestyle Behaviours and Mental Health Outcomes of Elderly: Modification of Socio-economic and Physical Health Effects[J]. Ageing International, 2021, 46(1): 35-69.
doi: 10.1007/s12126-020-09371-0
[53] Xazratovich K Z. Depression and Anxiety in Patients with Alcoholism Complicated by Nicotine Addiction[J]. Eurasian Medical Research Periodical, 2022, 9: 65-67.
[1] 陈果, 叶潮. 融合半监督学习与主动学习的细分领域新闻分类研究*[J]. 数据分析与知识发现, 2022, 6(4): 28-38.
[2] 吴金红, 穆克亮. 国际期刊异常行为的自动识别与预警研究*[J]. 数据分析与知识发现, 2022, 6(2/3): 385-395.
[3] 王楠, 李海荣, 谭舒孺. 基于舆情事件演化分析及改进KE-SMOTE算法的舆情反转预测研究*[J]. 数据分析与知识发现, 2022, 6(2/3): 396-408.
[4] 车宏鑫,王桐,王伟. 前列腺癌预测模型对比研究*[J]. 数据分析与知识发现, 2021, 5(9): 107-114.
[5] 徐良辰, 郭崇慧. 基于集成学习的胃癌生存预测模型研究*[J]. 数据分析与知识发现, 2021, 5(8): 86-99.
[6] 王楠,李海荣,谭舒孺. 基于改进SMOTE算法与集成学习的舆情反转预测研究*[J]. 数据分析与知识发现, 2021, 5(4): 37-48.
[7] 梁家铭, 赵洁, 郑鹏, 黄流深, 叶敏祺, 董振宁. 特征选择下融合图像和文本分析的在线短租平台信任计算框架 *[J]. 数据分析与知识发现, 2021, 5(2): 129-140.
[8] 邱云飞, 郭蕾. 面向非均衡数据的糖尿病并发症预测[J]. 数据分析与知识发现, 2021, 5(2): 116-128.
[9] 余本功,汲浩敏. 基于DW-TCI的半监督文本分类方法研究*[J]. 数据分析与知识发现, 2020, 4(10): 58-69.
[10] 余本功,曹雨蒙,陈杨楠,杨颖. 基于nLD-SVM-RF的短文本分类研究*[J]. 数据分析与知识发现, 2020, 4(1): 111-120.
[11] 周成,魏红芹. 专利价值评估与分类研究*——基于自组织映射支持向量机[J]. 数据分析与知识发现, 2019, 3(5): 117-124.
[12] 梁家铭,赵洁,Jianlong Zhou,董振宁. 用户隐式行为挖掘在抗信誉共谋中的应用研究*[J]. 数据分析与知识发现, 2019, 3(5): 125-138.
[13] 余本功,陈杨楠,杨颖. 基于nBD-SVM模型的投诉短文本分类*[J]. 数据分析与知识发现, 2019, 3(5): 77-85.
[14] 肖连杰,郜梦蕊,苏新宁. 一种基于模糊C-均值聚类的欠采样集成不平衡数据分类算法*[J]. 数据分析与知识发现, 2019, 3(4): 90-96.
[15] 温廷新,李洋子,孙静霜. 基于多因素特征选择与AFOA/K-means的新闻热点发现方法*[J]. 数据分析与知识发现, 2019, 3(4): 97-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn