Please wait a minute...
Data Analysis and Knowledge Discovery  2022, Vol. 6 Issue (7): 12-31    DOI: 10.11925/infotech.2096-3467.2022.0142
Original article Current Issue | Archive | Adv Search |
Review of Studies Identifying Disruptive Technologies
Zhang Jinzhu(),Wang Qiuyue,Qiu Mengmeng
School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094, China
Download: PDF (5497 KB)   HTML ( 24
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper reviews the literature identifying disruptive technologies, aiming to examine research topics and development trends, as well as establish a framework for further studies. [Coverage] We searched Chinese and English papers from CNKI and Web of Science with relevant keywords. We retrieved 1 974 papers published between 2011 and 2020 for quantitative analysis, and 61 papers published between 2001 and 2020 for qualitative analysis. [Methods] First, we identified the popular topics and development trends through quantitative analysis. Then, we examined the highly cited papers and the latest literature to review their research methods. Finally, we built a framework based on the results of quantitative and qualitative analysis which also predicted future trends. [Results] Studies identifying disruptive technologies were more popular in the fields of information technology, medical treatment, chemical industry, and high-end manufacturing. They included multiple-methodology from the perspectives of technologies themselves, products, sci-tech information mining, and external environment. We established three frameworks for disruptive technology identification and explored some future developments. [Limitations] More research on macro indicators, such as society- and economy-related issues, need to be reviewed comprehensively. [Conclusions] The research on disruptive technology identification has become inter-disciplinary, which include more quantitative methodology and the nonlinear algorithms based on deep learning.

Key wordsDisruptive Technology      Identification Method      Research Progress      Review     
Received: 23 February 2022      Published: 24 August 2022
ZTFLH:  G350  
Fund:National Natural Science Foundation of China(71974095);Postgraduate Research & Practice Innovation Program of Jiangsu Province(SJCX21_0168)
Corresponding Authors: Zhang Jinzhu, ORCID: 0000-0001-7581-1850     E-mail: zhangjinzhu@njust.edu.cn

Cite this article:

Zhang Jinzhu, Wang Qiuyue, Qiu Mengmeng. Review of Studies Identifying Disruptive Technologies. Data Analysis and Knowledge Discovery, 2022, 6(7): 12-31.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2022.0142     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2022/V6/I7/12

可计算特征 特征内涵 对应指标 计算方法
突破性 引入新技术的性能属性或重点发展不被主流技术重视的现存性能属性,并在属性上表现优越 技术性能突破性、技术能力破坏性、新技术的性能变化、创新系数、技术突变 对产品性能参数、市场购买量、论文/专利的文献特征进行统计,如被引情况、内容相似度、词突变程度
创新性 具有前瞻性、先导性、新颖性的高效新技术,能改变市场竞争格局,并代表和引领未来技术与产业的发展方向 技术前沿性、技术新颖性 对论文/专利等数据的主题演化、引文数量等进行分析,如主题融合、专利的科学引文新增数量
影响力 对其他技术发展的作用力,能影响其他多个技术的发展应用情况,包括影响的广度和深度,可直接反映技术价值 技术影响力、总体扩散率 对论文/专利被引、发文量、产品销售、市场分布情况等进行统计或用创新扩散的巴斯模型评估技术扩散度
成熟度 技术的主要属性、性能发展已比较成熟,且市场对已有的属性存在需求过剩的现象 产品成熟度、市场成熟度 借助数学模型绘制技术或产品的生命周期曲线直观、定量表示或通过专利数量与发展时间进行分析
期望效用 用户根据自己的需求对技术的价值、创新性、有用性等进行度量和评判 新技术的期望效用 借助效用函数计算技术间效用大小或设计量表分析
接受率 市场对技术的采纳情况,反映顾客从感知易用性和感知有用性角度接受一项新技术的意愿程度 市场接受率、技术采用率 通过统计技术产品销售量和市场占有率或用创新扩散的巴斯模型评估技术扩散度
颠覆潜力 一项全新的技术或旧技术突破对原有市场产生颠覆效应或在技术应用上产生重大范式转变 市场潜力、技术潜力 对专利申请活动、专利被引次数等文献特征进行统计或通过统计产品、产业数据进行衡量
Computable Features of Disruptive Technology
The Volume of Chinese and English Publications
Visualization of Research Topics in Different Categories based on English Literature
关键词 重点研究内容
Disruptive Technology/
Innovation
颠覆性技术的社会影响力、颠覆性技术的影响因素、颠覆性技术的研究热点
Breakthrough Technology/Innovation 突破性技术的影响力、突破性技术的影响因素、突破性技术的研究热点
Radical Technology/
Innovation
激进式创新的影响力、激进式创新的影响因素、激进式创新的研究热点
Summary of Key Research Contents Based on English Data
Visualization of Research Topics in Different Categories Based on Chinese Literature
主题类别 重点研究内容
颠覆性技术 颠覆性技术的影响因素、研究热点
突破性技术 突破性技术的影响因素、研究热点、识别方法
其他 影响因素、研究热点
Summary of Key Research Contents Based on Chinese Data
方法 主要思路 优点 缺点
专家意见法 参考多位领域专家意见做判断 流程简单 主观性强、成本高
技术路线图法 运用多种手段追踪技术发展轨迹,从中预测技术可能产生的变化 从技术发展角度预测趋势,有一定说服力 主观性强、成本较高、不确定性难以把控
情景分析法 通过专家判断技术发展的关键影响因素,构建技术应用情景,预测未来发展趋势 考虑了技术与市场间的动态关系 主观性强,成本高、过程较复杂、干扰因素较多
Method Comparison from the Perspective of Domain Expert Analysis
方法 主要思路 优点 缺点
技术创新性角度 从技术性能上的突破和创新角度设计指标 考虑了市场因素;指标体系较简单 技术与市场结合度较低
技术突破性角度 以技术突破性特征为核心,借助模型工具衡量突破性 定量分析比重增大 技术特征单一,缺乏说服力
多项技术特征综合 基于全部技术特征设计多类型指标,根据重要指标综合得分评估技术潜力 技术特征考虑全面;主观性弱 忽略技术外部特征;部分指标度量存在难度
Method Comparison from the Perspective of Technical Features
视角 技术特征 计算方法
产品 技术性能突破 利用产品性能参数定量计算
市场 技术成熟度
期望效用
设计数学模型绘制曲线
利用效用函数计算技术间效用大小或设计量表计算
技术自身 技术取代程度 利用新产品性能变化与进入市场的时间所反映的规律
Computable Feature Summary Based on Market Product Data
类型 主要思路 优点 缺点
产品性能提升角度 利用产品和技术的关联性,在产品性能提升过程挖掘技术演进规律 考虑了产品性能与技术发展的关系 外部因素仅涉及产品,缺乏全面性
市场定位角度 由一系列问题组成评估框架,对受访者进行访谈收集技术的市场表现 考虑到了市场对技术的影响 主观性难以避免;市场的不确定性难以把握、指标量化困难
技术取代角度 通过新技术的性能变化和技术进入市场的顺序所反映的规律评估技术取代程度 考虑了市场因素 技术特征选取角度较单一、指标量化困难
Method Comparison from the Perspective of Market and Products
技术特征 文献特征 计算方法
颠覆性潜力(技术潜力、市场潜力) 专利被引
专利申请活动
专利数量
分配指标权重,
综合计算
技术突破性 专利关键词 利用集对分析计算属性集变更程度
技术成熟度 专利数量
专利发展时间
专利的实施与应用效果
分配指标权重,
综合计算
Computable Feature Summary Based on Patent Data
技术特征 文献特征 计算方法
技术生命周期 论文年发表量 利用Fisher-Pry 模型拟合绘制曲线
技术前沿性 论文关键词
词频
分配指标权重,综合计算

技术突破性
论文被引
论文主题
论文关键词
统计被引强度
计算学科间主题差异
构建关键词共现网络,计算网络属性
技术成熟度 论文年度分布 基于生命周期绘制技术成熟度曲线
Computable Feature Summary Based on Scientific Literatures
技术特征 文献特征 计算方法
技术新颖性 专利科学引文数量
知识与技术的关联
分配指标权重,综合计算
技术突破性 专利分类号
专利科学引文数量
统计组合频次变化
统计新引用论文数量

技术突变性
专利间引用关系
论文主题词
论文/专利关键词
提取技术发展信息
从知识突变现象中统计变
化的程度
统计新关键词和重复关键
词的词频变化
Computable Feature Summary Based on Correlations Between Science and Technology
类型 主要思路 优点 缺点
基于专利数据挖掘 从专利中提取技术特征,构建预测模型;利用专利的多种数据属性分析技术演化路径 对专利数据的价值进行深入挖掘;提取的特征可定量计算 数据类型单一;可获取的特征、指标等信息不全面
基于科学论文数据挖掘 采用文本挖掘方法对论文特征进行提取,结合网络分析方法预测技术主题趋势 引入数据挖掘等方法,识别过程更加客观 数据类型单一;可获取的特征、指标等信息不全面
基于科学技术关联分析 利用专利引文的新颖性、学科融合性、知识突变性等特征,构建可计算指标体系 数据类型丰富,可利用信息更全面,结果客观性强 特征提取方法和效果对实验结果影响大;方法有待优化
Method Comparison from the Perspective of Scientific and Technological Information Mining
Research Framework
方法类型 评判指标
领域专家分析视角下的颠覆性技术识别方法 技术前沿性、技术突破性、技术接受率、外部因素协调性
技术特征视角下的颠覆性技术识别方法 技术突破、技术影响力、技术通用性、技术可行性、技术接受率、外部因素协调性、在位技术成熟度、技术创新性、市场差异性
市场产品视角下的颠覆性技术识别方法 技术性能突破、技术取代性、市场差异性
科技信息挖掘视角下的颠覆性技术识别方法 专利价值、知识突变、引文数量、技术融合性、技术前沿性、技术新颖性、技术突破性
Disruptive Technology Evaluation Index
[1] 张晓林. 颠覆数字图书馆的大趋势[J]. 中国图书馆学报, 2011, 37(5): 4-12.
[1] ( Zhang Xiaolin. The Trends That Will Disrupt Digital Libraries[J]. Journal of Library Science in China, 2011, 37(5): 4-12.)
[2] Deck M J. The Innovator’s Solution: Creating and Sustaining Successful Growth[J]. Journal of Product Innovation Management, 2005, 22(2): 213-215.
doi: 10.1111/j.0737-6782.2005.116_1.x
[3] 赵明剑, 司春林. 基于突破性技术创新的技术跨越机会窗口研究[J]. 科学学与科学技术管理, 2004, 25(5): 54-59.
[3] ( Zhao Mingjian, Si Chunlin. Research on the Possibility and Opportunity to Realize Technological Leapfrogging Based on Disruptive Technology Innovation[J]. Science of Science and Management of S&T, 2004, 25(5): 54-59.)
[4] 石慧, 潘云涛, 苏成. 颠覆性技术及其识别预测方法研究综述[J]. 情报工程, 2019, 5(3): 33-48.
[4] ( Shi Hui, Pan Yuntao, Su Cheng. A Review of Research on Disruptive Technology and its Recognition and Prediction Methods[J]. Technology Intelligence Engineering, 2019, 5(3): 33-48.)
[5] 李倩, 于娱, 施琴芬. 基于知识图谱的国内外颠覆式创新研究对比分析[J]. 科技管理研究, 2020, 40(15): 9-19.
[5] ( Li Qian, Shi Qinfen. A Comparative Analysis of Disruptive Innovation Research at Home and Abroad Based on Knowledge Map[J]. Science and Technology Management Research, 2020, 40(15): 9-19.)
[6] 刘秋艳, 吴新年. 国内外颠覆性技术发现方法研究综述[J]. 图书情报工作, 2017, 61(7): 127-136.
doi: 10.13266/j.issn.0252-3116.2017.07.018
[6] ( Liu Qiuyan, Wu Xinnian. Review on Disruptive Technology Discovery Methods[J]. Library and Information Service, 2017, 61(7): 127-136.)
doi: 10.13266/j.issn.0252-3116.2017.07.018
[7] 王超, 许海云, 方曙. 颠覆性技术识别与预测方法研究进展[J]. 科技进步与对策, 2018, 35(9): 152-160.
[7] ( Wang Chao, Xu Haiyun, Fang Shu. Progress of Approaches for Identification and Forecasting of Disruptive Technologies[J]. Science & Technology Progress and Policy, 2018, 35(9): 152-160.)
[8] 马利彬, 刁天喜, 房彤宇. 颠覆性技术识别方法研究与应用分析[J]. 军事医学, 2018, 42(1): 4-8, 12.
[8] ( Ma Libin, Diao Tianxi, Fang Tongyu. Research and Application of Disruptive Technology Identification Methods[J]. Military Medical Sciences, 2018, 42(1): 4-8, 12.)
[9] 张欣. 颠覆性技术识别方法述评[J]. 图书情报工作, 2020, 64(17): 145-152.
doi: 10.13266/j.issn.0252-3116.2020.17.015
[9] ( Zhang Xin. Research Review on Disruptive Technology Identification Method[J]. Library and Information Service, 2020, 64(17): 145-152.)
doi: 10.13266/j.issn.0252-3116.2020.17.015
[10] 张金柱, 张晓林. 基于专利科学引文的突破性创新识别研究述评[J]. 情报学报, 2016, 35(9): 955-962.
[10] ( Zhang Jinzhu, Zhang Xiaolin. Overview of Radical Innovation Identification Based on Scientific References in Patents[J]. Journal of the China Society for Scientific and Technical Information, 2016, 35(9): 955-962.)
[11] 周磊, 杨威, 张玉峰. 基于专利挖掘的突破性创新识别框架研究[J]. 情报理论与实践, 2016, 39(9): 73-76, 46.
[11] ( Zhou Lei, Yang Wei, Zhang Yufeng. Research on the Identification Framework of Radical Innovation Based on Patent Mining[J]. Information Studies: Theory & Application, 2016, 39(9): 73-76.)
[12] Bower J L, Christensen C M. Disruptive Technologies: Catching the Wave[J]. Harvard Business Review, 1995, 73(1): 43-53.
[13] Guttentag D. Airbnb: Disruptive Innovation and the Rise of An Informal Tourism Accommodation Sector[J]. Current Issues in Tourism, 2015, 18(12): 1192-1217.
doi: 10.1080/13683500.2013.827159
[14] 周洋, 张庆普. 高端颠覆性创新的技术演进轨迹和市场扩散路径[J]. 研究与发展管理, 2017, 29(6): 99-108.
[14] ( Zhou Yang, Zhang Qingpu. Technology Evolution Map and Market Diffusion Path of High-end Disruptive Innovation[J]. R & D Management, 2017, 29(6): 99-108.)
[15] 王晨筱, 周洋, 陆露, 等. 颠覆性创新四阶段扩散过程模型——基于液晶电视机与山寨手机案例[J]. 科技进步与对策, 2018, 35(22): 1-7.
[15] ( Wang Chenxiao, Zhou Yang, Lu Lu, et al. Study on the Four-Stage Diffusion Process Model of Disruptive Innovation——A Case Study on LCD TV and Emulational Mobile Phone[J]. Science & Technology Progress and Policy, 2018, 35(22): 1-7.)
[16] Rafii F, Kampas P J. How to Identify Your Enemies Before They Destroy You[J]. Harvard Business Review, 2002, 80(11): 115-123, 134.
[17] Gilbert C. Disruption Opportunity[J]. MIT Sloan Management Review, 2003, 44(4): 27-32.
[18] Danneels E. Disruptive Technology Reconsidered: A Critique and Research Agenda[J]. Journal of Product Innovation Management, 2004, 21(4): 246-258.
doi: 10.1111/j.0737-6782.2004.00076.x
[19] 卢光松, 卢平. 企业颠覆性技术路线图制定研究[J]. 科技进步与对策, 2011, 28(11): 81-86.
[19] ( Lu Guangsong, Lu Ping. Research on Corporate Roadmapping of Disruptive Technologies[J]. Science & Technology Progress and Policy, 2011, 28(11): 81-86.)
[20] 张佳维, 董瑜. 颠覆性技术识别指标的研究进展[J]. 情报理论与实践, 2020, 43(6): 194-199.
[20] ( Zhang Jiawei, Dong Yu. Research Progress of Disruptive Technical Identification Indicators[J]. Information Studies:Theory & Application, 2020, 43(6): 194-199.)
[21] Cheng Y, Huang L C, Ramlogan R, et al. Forecasting of Potential Impacts of Disruptive Technology in Promising Technological Areas: Elaborating the SIRS Epidemic Model in RFID Technology[J]. Technological Forecasting and Social Change, 2017, 117: 170-183.
doi: 10.1016/j.techfore.2016.12.003
[22] 王安, 孙棕檀, 沈艳波, 等. 国外颠覆性技术识别方法浅析[J]. 中国工程科学, 2017, 19(5): 79-84.
[22] ( Wang An, Sun Zongtan, Shen Yanbo, et al. Analysis of Disruptive Technology Identification Methods in Foreign Countries[J]. Engineering Science, 2017, 19(5): 79-84.)
[23] Ronzhyn A, Wimmer M A, Spitzer V, et al. Using Disruptive Technologies in Government: Identification of Research and Training Needs[C]// Proceedings of Electronic Government:18th IFIP WG 8.5 ConferenceInternational. 2019: 276-287.
[24] Stoiciu A, Szabó E, Totev M, et al. Assessing the Disruptiveness of New Energy Technologies - An Ex-Ante Perspective[R]. Vienna,Austria: University of Economics and Business, 2014:36-47.
[25] Sainio L M, Puumalainen K. Evaluating Technology Disruptiveness in a Strategic Corporate Context: A Case Study[J]. Technological Forecasting and Social Change, 2007, 74(8): 1315-1333.
doi: 10.1016/j.techfore.2006.12.004
[26] Hang C C, Chen J, Yu D. An Assessment Framework for Disruptive Innovation[J]. IEEE Engineering Management Review, 2013, 41(4): 109-118.
doi: 10.1109/EMR.2013.2288146
[27] 季丹, 郭政. 破坏性创新: 概念、比较与识别[J]. 经济与管理, 2009, 23(5): 16-20.
[27] ( Ji Dan, Guo Zheng. Disruptive Innovation: Conception, Contrast and Identification[J]. Economy and Management, 2009, 23(5): 16-20.)
[28] 卢光松, 卢平. 技术路线图与颠覆性技术创新[J]. 科技进步与对策, 2011, 28(3): 11-15.
[28] ( Lu Guangsong, Lu Ping. The Technology Path Map and Subversion Technology Innovation[J]. Science & Technology Progress and Policy, 2011, 28(3): 11-15.)
[29] Carlsen H, Dreborg K H, Godman M, et al. Assessing Socially Disruptive Technological Change[J]. Technology in Society, 2010, 32(3): 209-218.
doi: 10.1016/j.techsoc.2010.07.002
[30] Dixon T, Eames M, Britnell J, et al. Urban Retrofitting: Identifying Disruptive and Sustaining Technologies Using Performative and Foresight Techniques[J]. Technological Forecasting and Social Change, 2014, 89: 131-144.
doi: 10.1016/j.techfore.2013.08.027
[31] Kim J, Park Y, Lee Y. A Visual Scanning of Potential Disruptive Signals for Technology Roadmapping: Investigating Keyword Cluster, Intensity, and Relationship in Futuristic Data[J]. Technology Analysis & Strategic Management Journal, 2016, 28(10): 1225-1246.
[32] 王知津, 周鹏, 韩正彪. 基于情景分析法的技术预测研究[J]. 图书情报知识, 2013(5): 115-122.
[32] ( Wang Zhijin, Zhou Peng, Han Zhengbiao. A Study of the Technological Forecasting Based on Scenario Analysis[J]. Documentation, Information & Knowledge, 2013(5): 115-122.)
[33] Drew S A W. Building Technology Foresight: Using Scenarios to Embrace Innovation[J]. European Journal of Innovation Management, 2006, 9(3): 241-257.
doi: 10.1108/14601060610678121
[34] 黄鲁成, 蒋林杉, 吴菲菲. 萌芽期颠覆性技术识别研究[J]. 科技进步与对策, 2019, 36(1): 10-17.
[34] ( Huang Lucheng, Jiang Linshan, Wu Feifei. The Identification of Disruptive Technology on Emerging Stage[J]. Science & Technology Progress and Policy, 2019, 36(1): 10-17.)
[35] 石慧, 潘云涛, 赵筱媛, 等. 基于文献挖掘的颠覆性技术早期识别研究[J]. 中国科技资源导刊, 2019, 51(4): 102-110.
[35] ( Shi Hui, Pan Yuntao, Zhao Xiaoyuan, et al. Research on Early Identification of Disruptive Technology Based on Literature Mining[J]. China Science & Technology Resources Review, 2019, 51(4): 102-110.)
[36] 许泽浩, 张光宇, 黄水芳. 颠覆性技术创新潜力评价与选择研究: TRIZ理论视角[J]. 工业工程, 2019, 22(5): 109-117.
[36] ( Xu Zehao, Zhang Guangyu, Huang Shuifang. A Research on Disruptive Technology Innovation Potential Evaluation and Selection: Perspective of TRIZ[J]. Industrial Engineering Journal, 2019, 22(5): 109-117.)
[37] 任工昌, 山旭. TRIZ与情景分解法在破坏性创新中的应用[J]. 现代制造工程, 2018(8): 16-19.
[37] ( Ren Gongchang, Shan Xu. The Application of TRIZ and Scenario Decomposition in Disruptive Innovation[J]. Modern Manufacturing Engineering, 2018(8): 16-19.)
[38] Hüsig S, Hipp C, Dowling M. Analysing Disruptive Potential: The Case of Wireless Local Area Network and Mobile Communications Network Companies[J]. R&D Management, 2005, 35(1): 17-35.
[39] Govindarajan V, Kopalle P K. Disruptiveness of Innovations: Measurement and an Assessment of Reliability and Validity[J]. Strategic Management Journal, 2006, 27(2): 189-199.
doi: 10.1002/smj.511
[40] Keller A, Hüsig S. Ex Ante Identification of Disruptive Innovations in The Software Industry Applied to Web Applications: The Case of Microsoft’s vs. Google’s Office Applications[J]. Technological Forecasting and Social Change, 2009, 76(8): 1044-1054.
doi: 10.1016/j.techfore.2009.03.005
[41] Guo J F, Pan J F, Guo J X, et al. Measurement Framework for Assessing Disruptive Innovations[J]. Technological Forecasting and Social Change, 2019, 139: 250-265.
doi: 10.1016/j.techfore.2018.10.015
[42] Sun J G, Gao J Y, Yang B J, et al. Achieving Disruptive Innovation-forecasting Potential Technologies Based upon Technical System Evolution by TRIZ[C]// Proceedings of 2008 the 4th IEEE International Conference on Management of Innovation & Technology. IEEE, 2008: 18-22.
[43] Anderson T R, Daim T U, Kim J. Technology Forecasting for Wireless Communication[J]. Technovation, 2008, 28(9): 602-614.
doi: 10.1016/j.technovation.2007.12.005
[44] Paap J, Katz R. Anticipating Disruptive Innovation[J]. Research-Technology Management, 2004, 47(5): 13-22.
[45] 白光祖, 郑玉荣, 吴新年, 等. 基于文献知识关联的颠覆性技术预见方法研究与实证[J]. 情报杂志, 2017, 36(9): 38-44.
[45] ( Bai Guangzu, Zheng Yurong, Wu Xinnian, et al. Research and Demonstration on Forecasting Method of Disruptive Technology Based on Literature Knowledge Correlation[J]. Journal of Intelligence, 2017, 36(9): 38-44.)
[46] Sood A, Tellis G J. Demystifying Disruption: A New Model for Understanding and Predicting Disruptive Technologies[J]. Marketing Science, 2011, 30(2): 339-354.
doi: 10.1287/mksc.1100.0617
[47] Buchanan B, Corken R. A Toolkit for the Systematic Analysis of Patent Data to Assess a Potentially Disruptive Technology[Z]. Intellectual Property Office United Kingdom, 2010.
[48] Momeni A, Rost K. Identification and Monitoring of Possible Disruptive Technologies by Patent-Development Paths and Topic Modeling[J]. Technological Forecasting and Social Change, 2016, 104: 16-29.
doi: 10.1016/j.techfore.2015.12.003
[49] 黄鲁成, 成雨, 吴菲菲, 等. 关于颠覆性技术识别框架的探索[J]. 科学学研究, 2015, 33(5): 654-664.
[49] ( Huang Lucheng, Cheng Yu, Wu Feifei, et al. Study on Identification Framework of Disruptive Technology[J]. Studies in Science of Science, 2015, 33(5): 654-664.)
[50] 苏敬勤, 刘建华, 王智琦, 等. 颠覆性技术的演化轨迹及早期识别——以智能手机等技术为例[J]. 科研管理, 2016, 37(3): 13-20.
[50] ( Su Jingqin, Liu Jianhua, Wang Zhiqi, et al. The Evolution Trajectory and Early Identification of Disruptive Technology by Taking Smartphones and Other Technologies as an Example[J]. Science Research Management, 2016, 37(3): 13-20.)
[51] 罗素平, 寇翠翠, 金金, 等. 基于离群专利的颠覆性技术预测——以中药专利为例[J]. 情报理论与实践, 2019, 42(7): 165-170.
[51] ( Luo Suping, Kou Cuicui, Jin Jin, et al. Disruptive Technology Prediction Based on Outlier Patents: Traditional Chinese Medicine Patents as an Example[J]. Information Studies:Theory & Application, 2019, 42(7): 165-170.)
[52] 栾春娟, 程昉. 技术的市场潜力测度与预测——基于技术颠覆潜力与技术成熟度综合指标[J]. 科学学研究, 2016, 34(12): 1761-1768.
[52] ( Luan Chunjuan, Cheng Fang. Measuring and Forecasting Technology Market Potential Based on Aggregative Indicators of Disruptive Potential & Technology Maturity[J]. Studies in Science of Science, 2016, 34(12): 1761-1768.)
[53] Jia W F, Xie Y P, Zhao Y N, et al. Research on Disruptive Technology Recognition of China’s Electronic Information and Communication Industry Based on Patent Influence[J]. Journal of Global Information Management, 2021, 29(2): 148-165.
[54] Dotsika F, Watkins A. Identifying Potentially Disruptive Trends by Means of Keyword Network Analysis[J]. Technological Forecasting and Social Change, 2017, 119: 114-127.
doi: 10.1016/j.techfore.2017.03.020
[55] Arts S, Appio F P, Looy B. Inventions Shaping Technological Trajectories: Do Existing Patent Indicators Provide a Comprehensive Picture?[J]. Scientometrics, 2013, 97(2): 397-419.
doi: 10.1007/s11192-013-1045-1
[56] Shirabe M. Identifying SCI Covered Publications within Non-patent References in US Utility Patents[J]. Scientometrics, 2014, 101(2): 999-1014.
doi: 10.1007/s11192-014-1293-8
[57] Lee F. Recombinant Uncertainty in Technological Search[J]. Management Science, 2001, 47(1): 117-132.
doi: 10.1287/mnsc.47.1.117.10671
[58] Tortoriello M, McEvily B, Krackhardt D. Being a Catalyst of Innovation: The Role of Knowledge Diversity and Network Closure[J]. Organization Science, 2015, 26(2): 423-438.
doi: 10.1287/orsc.2014.0942
[59] Singh J, Fleming L. Lone Inventors as Sources of Breakthroughs: Myth or Reality?[J]. Management Science, 2010, 56(1): 41-56.
doi: 10.1287/mnsc.1090.1072
[60] 张金柱, 张晓林. 基于被引科学知识主题突变的突破性创新识别[J]. 现代图书情报技术, 2016(7/8): 42-50.
[60] ( Zhang Jinzhu, Zhang Xiaolin. Radical Innovation Identification Based on Topic Mutation of Scientific Knowledge Cited in Patents[J]. New Technology of Library and Information Service, 2016(7/8): 42-50.)
[61] 王猛. 颠覆性创新的研究热点与趋势[J]. 社会科学战线, 2019(11): 249-253.
[61] ( Wang Meng. Research Hotspots and Trends of Disruptive Innovation[J]. Social Science Front, 2019(11): 249-253.)
[1] Yue Mingliang,Li Fushan,Tang Hongbo,Lv Xinhua,Ma Tingcan. Evaluating Consistency of Scholarly Article Reviewers[J]. 数据分析与知识发现, 2021, 5(4): 115-122.
[2] Li Feifei,Wu Fan,Wang Zhongqing. Sentiment Analysis with Reviewer Types and Generative Adversarial Network[J]. 数据分析与知识发现, 2021, 5(4): 72-79.
[3] Feng Yong,Liu Yang,Xu Hongyan,Wang Rongbing,Zhang Yonggang. Recommendation Model Incorporating Neighbor Reviews for GRU Products[J]. 数据分析与知识发现, 2021, 5(3): 78-87.
[4] Wang Wei, Gao Ning, Xu Yuting, Wang Hongwei. Topic Evolution of Online Reviews for Crowdfunding Campaigns[J]. 数据分析与知识发现, 2021, 5(10): 103-123.
[5] Zhang Yi,Yang Yi,Deng Wen. A Systematic Review of Factors Influencing Online Trust[J]. 数据分析与知识发现, 2020, 4(5): 15-26.
[6] Shen Zhuo,Li Yan. Mining User Reviews with PreLM-FT Fine-Grain Sentiment Analysis[J]. 数据分析与知识发现, 2020, 4(4): 63-71.
[7] Xiang Fei,Xie Yaotan. Recognition Model of Patient Reviews Based on Mixed Sampling and Transfer Learning[J]. 数据分析与知识发现, 2020, 4(2/3): 39-47.
[8] Jiafen Wu,Feicheng Ma. Detecting Product Review Spam: A Survey[J]. 数据分析与知识发现, 2019, 3(9): 1-15.
[9] Ruihua Qi,Junyi Zhou,Xu Guo,Caihong Liu. Extracting Book Review Topics with Knowledge Base[J]. 数据分析与知识发现, 2019, 3(6): 83-91.
[10] Hui Nie. Modeling Users with Word Vector and Term-Graph Algorithm[J]. 数据分析与知识发现, 2019, 3(12): 30-40.
[11] Guijun Yang,Xue Xu,Fuqiang Zhao. Predicting User Ratings with XGBoost Algorithm[J]. 数据分析与知识发现, 2019, 3(1): 118-126.
[12] Liu Lina,Qi Jiayin,Zhang Zhenping,Zeng Dan. Analyzing Impacts of Brand Reputation on Online Sales Based on Massive Commodity Reviews and Brand[J]. 数据分析与知识发现, 2018, 2(9): 10-21.
[13] Yu Bengong,Zhang Peihang,Xu Qingtang. Selecting Products Based on F-BiGRU Sentiment Analysis[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[14] Li Weiqing,Wang Weijun. Building Product Feature Dictionary with Large-scale Review Data[J]. 数据分析与知识发现, 2018, 2(1): 41-50.
[15] Wu Jiang,Liu Wanwan. Identifying Reviews with More Positive Votes——Case Study of Amazon.cn[J]. 数据分析与知识发现, 2017, 1(9): 16-27.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn