基于集成学习的中国P2P网络借贷信用风险预警模型的对比研究*
操玮, 李灿, 贺婷婷, 朱卫东

Predicting Credit Risks of P2P Loans in China Based on Ensemble Learning Methods
Cao Wei,Li Can,He Tingting,Zhu Weidong
表4 根据三个指标的集成模型准确性评估 (训练测试比为60:40)
集成算法 基分类器 准确率(%) Type-I error (%) AUC
A FS A FS A FS
Bagging LR 97.17 98.79 7.47 6.71 0.987 0.989
CART 98.08 98.58 6.32 2.87 0.936 0.999
C4.5 97.67 98.28 6.90 2.87 0.949 0.998
MLP 96.06 98.08 10.92 8.05 0.988 0.998
SVM 97.47 97.97 9.20 6.32 0.973 0.995
Boosting LR 97.98 98.48 5.74 3.45 0.984 0.898
CART 97.17 98.88 6.32 5.17 0.983 0.994
C4.5 97.17 98.07 5.17 4.02 0.995 0.996
MLP 97.27 98.88 8.05 2.30 0.995 0.999
SVM 97.97 98.28 8.62 4.59 0.954 0.971
Random
Subspace
LR 95.55 97.27 15.52 8.05 0.984 0.996
CART 96.46 97.17 4.59 2.87 0.940 0.981
C4.5 95.05 98.07 6.32 4.02 0.961 0.994
MLP 95.45 97.67 8.62 7.47 0.965 0.997
SVM 96.87 97.37 9.77 7.47 0.955 0.963
Rotation Forest LR 98.68 99.69 3.45 0.57 0.998 1.000
CART 98.48 99.19 3.45 1.15 0.992 0.998
C4.5 97.97 98.99 6.90 5.17 0.954 0.996
MLP 98.07 99.29 6.32 1.15 0.997 1.000
SVM 98.78 99.79 4.59 0.00 0.975 0.999