基于集成学习的中国P2P网络借贷信用风险预警模型的对比研究*
|
操玮, 李灿, 贺婷婷, 朱卫东
|
Predicting Credit Risks of P2P Loans in China Based on Ensemble Learning Methods
|
Cao Wei,Li Can,He Tingting,Zhu Weidong
|
|
表4 根据三个指标的集成模型准确性评估 (训练测试比为60:40) |
|
|
集成算法 | 基分类器 | 准确率(%) | Type-I error (%) | AUC | A | FS | A | FS | A | FS | Bagging | LR | 97.17 | 98.79 | 7.47 | 6.71 | 0.987 | 0.989 | CART | 98.08 | 98.58 | 6.32 | 2.87 | 0.936 | 0.999 | C4.5 | 97.67 | 98.28 | 6.90 | 2.87 | 0.949 | 0.998 | MLP | 96.06 | 98.08 | 10.92 | 8.05 | 0.988 | 0.998 | SVM | 97.47 | 97.97 | 9.20 | 6.32 | 0.973 | 0.995 | Boosting | LR | 97.98 | 98.48 | 5.74 | 3.45 | 0.984 | 0.898 | CART | 97.17 | 98.88 | 6.32 | 5.17 | 0.983 | 0.994 | C4.5 | 97.17 | 98.07 | 5.17 | 4.02 | 0.995 | 0.996 | MLP | 97.27 | 98.88 | 8.05 | 2.30 | 0.995 | 0.999 | SVM | 97.97 | 98.28 | 8.62 | 4.59 | 0.954 | 0.971 | Random Subspace | LR | 95.55 | 97.27 | 15.52 | 8.05 | 0.984 | 0.996 | CART | 96.46 | 97.17 | 4.59 | 2.87 | 0.940 | 0.981 | C4.5 | 95.05 | 98.07 | 6.32 | 4.02 | 0.961 | 0.994 | MLP | 95.45 | 97.67 | 8.62 | 7.47 | 0.965 | 0.997 | SVM | 96.87 | 97.37 | 9.77 | 7.47 | 0.955 | 0.963 | Rotation Forest | LR | 98.68 | 99.69 | 3.45 | 0.57 | 0.998 | 1.000 | CART | 98.48 | 99.19 | 3.45 | 1.15 | 0.992 | 0.998 | C4.5 | 97.97 | 98.99 | 6.90 | 5.17 | 0.954 | 0.996 | MLP | 98.07 | 99.29 | 6.32 | 1.15 | 0.997 | 1.000 | SVM | 98.78 | 99.79 | 4.59 | 0.00 | 0.975 | 0.999 |
|
|
|