基于集成学习的中国P2P网络借贷信用风险预警模型的对比研究*
|
操玮, 李灿, 贺婷婷, 朱卫东
|
Predicting Credit Risks of P2P Loans in China Based on Ensemble Learning Methods
|
Cao Wei,Li Can,He Tingting,Zhu Weidong
|
|
表5 根据三个指标的集成模型准确性评估 (训练测试比为70:30) |
|
|
集成算法 | 基分类器 | 准确率(%) | Type-I error (%) | AUC | A | FS | A | FS | A | FS | Bagging | LR | 98.65 | 99.46 | 6.03 | 2.59 | 0.990 | 0.998 | CART | 97.71 | 98.65 | 6.03 | 5.17 | 0.977 | 0.996 | C4.5 | 97.71 | 98.65 | 12.93 | 5.17 | 0.992 | 0.998 | MLP | 96.36 | 98.38 | 10.34 | 5.17 | 0.992 | 0.998 | SVM | 98.52 | 98.92 | 5.17 | 1.72 | 0.974 | 0.994 | Boosting | LR | 97.98 | 98.48 | 5.74 | 3.45 | 0.984 | 0.898 | CART | 97.71 | 99.59 | 5.17 | 1.72 | 0.984 | 0.999 | C4.5 | 97.30 | 98.38 | 6.03 | 3.45 | 0.981 | 0.997 | MLP | 97.30 | 99.32 | 7.76 | 3.44 | 0.996 | 0.999 | SVM | 98.52 | 98.65 | 4.31 | 2.59 | 0.974 | 0.981 | Random Subspace | LR | 97.71 | 98.79 | 7.41 | 4.31 | 0.988 | 0.994 | CART | 96.23 | 97.04 | 12.93 | 5.17 | 0.975 | 0.976 | C4.5 | 96.36 | 97.57 | 12.07 | 3.45 | 0.957 | 0.997 | MLP | 96.77 | 97.57 | 12.93 | 4.31 | 0.993 | 0.995 | SVM | 97.98 | 98.25 | 7.76 | 4.31 | 0.956 | 0.994 | Rotation Forest | LR | 98.65 | 99.59 | 4.31 | 0.86 | 0.998 | 1.000 | CART | 98.11 | 98.65 | 3.44 | 1.72 | 0.993 | 0.995 | C4.5 | 98.65 | 99.05 | 6.03 | 3.45 | 0.985 | 0.999 | MLP | 97.84 | 99.46 | 7.76 | 2.59 | 0.995 | 0.999 | SVM | 98.92 | 99.73 | 4.31 | 1.72 | 0.976 | 1.000 |
|
|
|