基于集成学习的中国P2P网络借贷信用风险预警模型的对比研究*
操玮, 李灿, 贺婷婷, 朱卫东

Predicting Credit Risks of P2P Loans in China Based on Ensemble Learning Methods
Cao Wei,Li Can,He Tingting,Zhu Weidong
表5 根据三个指标的集成模型准确性评估 (训练测试比为70:30)
集成算法 基分类器 准确率(%) Type-I error (%) AUC
A FS A FS A FS
Bagging LR 98.65 99.46 6.03 2.59 0.990 0.998
CART 97.71 98.65 6.03 5.17 0.977 0.996
C4.5 97.71 98.65 12.93 5.17 0.992 0.998
MLP 96.36 98.38 10.34 5.17 0.992 0.998
SVM 98.52 98.92 5.17 1.72 0.974 0.994
Boosting LR 97.98 98.48 5.74 3.45 0.984 0.898
CART 97.71 99.59 5.17 1.72 0.984 0.999
C4.5 97.30 98.38 6.03 3.45 0.981 0.997
MLP 97.30 99.32 7.76 3.44 0.996 0.999
SVM 98.52 98.65 4.31 2.59 0.974 0.981
Random
Subspace
LR 97.71 98.79 7.41 4.31 0.988 0.994
CART 96.23 97.04 12.93 5.17 0.975 0.976
C4.5 96.36 97.57 12.07 3.45 0.957 0.997
MLP 96.77 97.57 12.93 4.31 0.993 0.995
SVM 97.98 98.25 7.76 4.31 0.956 0.994
Rotation Forest LR 98.65 99.59 4.31 0.86 0.998 1.000
CART 98.11 98.65 3.44 1.72 0.993 0.995
C4.5 98.65 99.05 6.03 3.45 0.985 0.999
MLP 97.84 99.46 7.76 2.59 0.995 0.999
SVM 98.92 99.73 4.31 1.72 0.976 1.000