基于集成学习的中国P2P网络借贷信用风险预警模型的对比研究*
|
操玮, 李灿, 贺婷婷, 朱卫东
|
Predicting Credit Risks of P2P Loans in China Based on Ensemble Learning Methods
|
Cao Wei,Li Can,He Tingting,Zhu Weidong
|
|
表6 根据三个指标的集成模型准确性评估 (训练测试比为80:20) |
|
|
集成算法 | 基分类器 | 准确率(%) | Type-I error (%) | AUC | A | FS | A | FS | A | FS | Bagging | LR | 97.17 | 98.99 | 7.32 | 4.90 | 0.962 | 0.990 | CART | 97.17 | 98.78 | 8.53 | 6.09 | 0.968 | 0.994 | C4.5 | 97.57 | 98.58 | 9.76 | 4.90 | 0.995 | 0.997 | MLP | 96.56 | 98.79 | 8.53 | 6.09 | 0.989 | 0.985 | SVM | 96.37 | 98.38 | 9.76 | 3.66 | 0.976 | 0.986 | Boosting | LR | 96.56 | 97.57 | 13.41 | 6.09 | 0.966 | 0.995 | CART | 97.37 | 97.77 | 8.53 | 3.66 | 0.995 | 0.997 | C4.5 | 95.14 | 97.36 | 8.53 | 4.90 | 0.972 | 0.980 | MLP | 97.37 | 98.58 | 9.76 | 6.09 | 0.993 | 0.996 | SVM | 97.37 | 98.18 | 7.32 | 3.66 | 0.982 | 0.990 | Random Subspace | LR | 94.13 | 97.36 | 20.73 | 8.53 | 0.966 | 0.994 | CART | 96.56 | 96.96 | 14.63 | 9.76 | 0.940 | 0.997 | C4.5 | 96.56 | 97.16 | 12.20 | 10.98 | 0.964 | 0.975 | MLP | 95.95 | 97.97 | 8.53 | 7.32 | 0.968 | 0.991 | SVM | 96.56 | 97.77 | 14.63 | 9.76 | 0.967 | 0.983 | Rotation Forest | LR | 98.38 | 99.39 | 6.09 | 1.20 | 0.994 | 1.000 | CART | 97.57 | 99.19 | 6.09 | 1.20 | 0.992 | 0.996 | C4.5 | 97.57 | 99.19 | 7.32 | 1.20 | 0.981 | 0.998 | MLP | 98.38 | 99.19 | 7.32 | 2.44 | 0.992 | 1.000 | SVM | 98.58 | 99.39 | 6.09 | 1.20 | 0.981 | 1.000 |
|
|
|