基于集成学习的中国P2P网络借贷信用风险预警模型的对比研究*
操玮, 李灿, 贺婷婷, 朱卫东

Predicting Credit Risks of P2P Loans in China Based on Ensemble Learning Methods
Cao Wei,Li Can,He Tingting,Zhu Weidong
表6 根据三个指标的集成模型准确性评估 (训练测试比为80:20)
集成算法 基分类器 准确率(%) Type-I error (%) AUC
A FS A FS A FS
Bagging LR 97.17 98.99 7.32 4.90 0.962 0.990
CART 97.17 98.78 8.53 6.09 0.968 0.994
C4.5 97.57 98.58 9.76 4.90 0.995 0.997
MLP 96.56 98.79 8.53 6.09 0.989 0.985
SVM 96.37 98.38 9.76 3.66 0.976 0.986
Boosting LR 96.56 97.57 13.41 6.09 0.966 0.995
CART 97.37 97.77 8.53 3.66 0.995 0.997
C4.5 95.14 97.36 8.53 4.90 0.972 0.980
MLP 97.37 98.58 9.76 6.09 0.993 0.996
SVM 97.37 98.18 7.32 3.66 0.982 0.990
Random Subspace LR 94.13 97.36 20.73 8.53 0.966 0.994
CART 96.56 96.96 14.63 9.76 0.940 0.997
C4.5 96.56 97.16 12.20 10.98 0.964 0.975
MLP 95.95 97.97 8.53 7.32 0.968 0.991
SVM 96.56 97.77 14.63 9.76 0.967 0.983
Rotation Forest LR 98.38 99.39 6.09 1.20 0.994 1.000
CART 97.57 99.19 6.09 1.20 0.992 0.996
C4.5 97.57 99.19 7.32 1.20 0.981 0.998
MLP 98.38 99.19 7.32 2.44 0.992 1.000
SVM 98.58 99.39 6.09 1.20 0.981 1.000