基于多特征融合的中文文本分类研究*
|
王艳,王胡燕,余本功
|
Chinese Text Classification with Feature Fusion
|
Wang Yan,Wang Huyan,Yu Bengong
|
|
表4 多特征融合模型对比(计算机专利)
|
Table 4 Comparison of Multi-Feature Fusion Models (Computer Data)
|
|
数据集 | 模型 | Acc | P | R | F1 | 计算机专利 | POS-BiGRUCNN | 57.3% | 59.4% | 58.1% | 60.0% | PY-BiGRUCNN | 64.1% | 65.3% | 63.5% | 64.1% | HZ-BiGRUCNN | 65.2% | 62.7% | 62.6% | 62.2% | Word-BiGRUCNN | 76.1% | 76.9% | 76.2% | 76.5% | POS-Word-BiGRUCNN | 78.1% | 77.5% | 77.1% | 77.3% | PY-Word-BiGRUCNN | 79.1% | 78.8% | 78.5% | 77.5% | HZ-Word-BiGRUCNN | 80.2% | 79.5% | 79.3% | 79.5% | PY-POS-Word-BiGRUCNN | 81.3% | 80.3% | 78.6% | 79.4% | HZ-POS-Word-BiGRUCNN | 81.2% | 81.3% | 80.5% | 80.9% | PY-HZ-Word-BiGRUCNN | 82.2% | 82.3% | 81.9% | 80.9% | PY-POS-HZ-Word-BiGRUCNN(本文) | 83.3% | 83.6% | 82.9% | 83.4% |
|
|
|