Please wait a minute...
Data Analysis and Knowledge Discovery  2024, Vol. 8 Issue (3): 1-9    DOI: 10.11925/infotech.2096-3467.2024.0188
Current Issue | Archive | Adv Search |
AI-Empowered Policy for Science & Technology Decision Intelligence—Developing New Quality Productive Forces for Knowledge Services
Zhang Xiaolin()
ShanghaiTech University, Shanghai 201210, China
National Science Library, Chinese Academy of Sciences, Beijing 100190, China
Download: PDF (1195 KB)   HTML ( 30
Export: BibTeX | EndNote (RIS)      
Abstract  

The onset of ChatGPT, Sora, Claude-3, and the like, has brought about the era of AIGC for text, images, and videos. Literature review, scientometric analysis, and S&T trends analysis have also being rapidly taken over by AI tools, thus making traditional knowledge services (KS) falling into a “low-quality productivity trap”. It is difficult to develop new quality productive forces with competitive vitality and resilience by only using AI to optimize the execution efficiency of traditional KS business logic. AI, as illustrated by Large Language Models (LLM), has broken the reductionist “research model” that disassembles complex phenomena and systems into individual parts to study and solve, and the turing computing model that pursues deterministic computing, therefore able to handle the dimensional disaster from the combinatorial explosion of complex multi-interactive systems. This helps us to truly take “complex problems, dynamic decision conditions, and selective operational solutions” as the goal of KS, and provides users with decision intelligence. This may be the starting point in the search for new quality productive forces in KS. But it is imperative to ask “what is the real problem” from the point of First Principle. Starting from the fundamental needs of decision users of KS, we need to think clearly about what KS should do, can do, and must do. Admittedly, when problems of decision-makers ask for various data or information analysis, what they really need is to answer is not just “what is” but “why is so and what can/should I do” in their S&T planning, organizing, resourcing, evaluating, etc., under their specific conditions. If so, KS should now be positioned as a “user decision-making productivity service”, focusing on Policy for S&T (P4ST), hence transforming KS from the literature-oriented or data-oriented or indicator-oriented to user-problem/solution-oriented models, and from data or computational intelligence to cognitive and decision intelligence. Based on several examples, this paper proposes a generalized decision-making genomic model for AI-empowered Policy for Science & Technology (AI4P4ST). The model consists of an Agent axis (multi-levels from individuals to nations), an Action axis (planning, organizing, budgeting, evaluation, etc.), and an Outcome axis (plans, institutions, teams, projects, papers, patents, products, etc.). Use of this model supports intelligent decision-making analysis under the dynamics of complex systems. With multiple combinations of variables that interact in known or unknown ways, we can perform multi-modal cross-scale modeling and analysis of multi-dimensional multi-variates, continuously adjusting to approximate possible solutions with quantifiable uncertainties, so that decision-makers can select for a decision. AI4P4ST analysis can progressively implement the P4ST analysis pipelines that supports the dynamics of complex systems. The LLM Prompt Engineering and its many augmented models can be used to build an AI4P4ST Chain of Analyses. In addition, technologies such as AI Agents, Multi-Agents Models, and Mixture of Experts (MoE) models, as well as mechanisms such as LangChain or GPTSwarm, can be employed to support AI-enabled application processes that combine multiple LLMs and specialized tools, thus enabling intelligent processes such as planning, prediction, experimentation, verification, and analysis for AI4P4ST. Of course, AI4P4ST still faces challenges from complex data environments and complex social dynamics, including multi-modal heterogeneous data environments, boundary uncertainty, strong game adversariality, difficulties in handling critical states, and weak counterfactual reasoning. This may require a combination of knowledge-based intelligence modeling, simulation and prediction based on the complex system dynamics, and data-based LLM modeling, and the use of LLM models to plan, coordinate, and support these modeling and analysis.

Key wordsAI      Policy for Science and Technology      Knowledge Services      New Quality Productive Forces      Decision Intelligence Decision-making Genomic Model      AI for P4ST Chain of Analyses     
Received: 01 March 2024      Published: 12 April 2024
Corresponding Authors: Zhang Xiaolin,ORCID:0000-0001-8891-8366,E-mail: zhangxl@mail.las.ac.cn。   

Cite this article:

Zhang Xiaolin. AI-Empowered Policy for Science & Technology Decision Intelligence—Developing New Quality Productive Forces for Knowledge Services. Data Analysis and Knowledge Discovery, 2024, 8(3): 1-9.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2024.0188     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2024/V8/I3/1

[1] Wang H C, Fu T F, Du Y Q. et al. Scientific Discovery in the Age of Artificial Intelligence[J]. Nature, 2023, 620: 47-60.
doi: 10.1038/s41586-023-06221-2
[2] Zhang Q, Ding K Y, Lyv T W, et al. Scientific Large Language Models: A Survey on Biological & Chemical Domains[OL]. arXiv Preprint, arXiv:2401.14656.
[3] 杨小康, 许岩岩, 陈露, 等. AI for Science:智能化科学设施变革基础研究[J]. 中国科学院院刊, 2024, 39(1): 59-69.
[3] (Yang Xiaokang, Xu Yanyan, Chen Lu, et al. AI for Science:AI Enabled Scientific Facility Transforms Fundamental Research[J]. Bulletin of Chinese Academy of Sciences, 2024, 39(1): 59-69.)
[4] Microsoft Research AI4Science[EB/OL].[2024-03-03]. https://www.microsoft.com/en-us/research/lab/microsoft-research-ai4science/.
[5] Marjit U. The Best 8 AI-Powered Tools for Literature Review[EB/OL]. (2023-05-29). [2024-03-03]. https://researcherssite.com/the-best-8-ai-powered-tools-for-literature-review/.
[6] AMiner知因分析数据库[EB/OL]. [2024-03-05]. https://vip.aminer.cn/analysis/.
[7] 星火科研助手[EB/OL]. [2024-03-05]. https://paper.iflytek.com/.
[8] Dagdelen J, Dunn A, Lee S, et al. Structured Information Extraction from Scientific Text with Large Language Models[J]. Nature Communications, https://www.nature.com/articles/s41467-024-45563-x.
[9] Selby D, Spriestersbach K, Iwashita Y, et al. Had Enough of Experts? Quantitative Knowledge Retrieval from Large Language Models[OL]. arXiv Preprint, arXiv: 2402.07770.
[10] Gao Z L, Brantley K, Joachims T. REVIEWER2: Optimizing Review Generation Through Prompt Generation[OL]. arXiv Preprint, arXiv:2402.10886.
[11] 使用GPT-4, 学渣比学霸更有优势[EB/OL]. [2024-03-14]. https://new.qq.com/rain/a/20240216A00SGJ00.
[12] Eloundou T, Manning S, Mishkin P, et al. GPTs are GPTs: An Early Look at the Labor Market Impact Potential of Large Language Models[OL]. arXiv Preprint, arXiv:2303.10130.
[13] Large Language Models and the End of Programming with Matt Welsh[EB/OL]. (2023-05-09).[2024-03-14]. https://learning.acm.org/techtalks/endporgramming.
[14] 澎湃新闻. 李彦宏:“程序员”职业将不复存在[EB/OL]. (2024-03-10). [2024-03-10]. https://www.thepaper.cn/newsDetail_forward_26628967.
[15] 2024年大模型Multi-agent多智能体应用技术:AutoGen, MetaGPT, XAgent, AutoAgents,CrewAI[EB/OL]. [2024-03-02]. https://zhuanlan.zhihu.com/p/671355141.
[16] MoE-超越ChatGPT的开源混合专家模型[EB/OL]. [2024-03-15]. https://zhuanlan.zhihu.com/p/674162664.
[17] 新智元. Claude 3颠覆物理/化学, 2小时破解博士一年实验成果[EB/OL]. (2024-03-07).[2024-03-15]. https://www.36kr.com/p/2679053260453641.
[18] 郑永年. 中国跨越“中等技术陷阱”的策略研究[J]. 中国科学院院刊, 2023, 38(11): 1579-1592.
[18] (Zheng Yongnian. How can China Avoid the Middle-technology Trap?[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(11): 1579-1592.)
[19] 国家数据局等. “数据要素×”三年行动计划(2024—2026年)[EB/OL]. (2023-12-31).[2024-03-03]. http://www.cac.gov.cn/2024-01/05/c_1706119078060945.htm.
[20] 微软,真的又行了?[EB/OL]. (2023-04-14).[2024-03-03]. https://36kr.com/p/2214511891789185.
[21] Nadella S, Shaw G, Nichols J. Hit Refresh: The Quest to Rediscover Microsoft’s Soul and Imagine a Better Future for Everyone[M]. Harper Business, 2017.
[22] 李国杰. 智能化科研(AI4R):第五科研范式[J]. 中国科学院院刊, 2024, 39(1): 1-9.
[22] (Li Guojie. AI4R: The Fifth Scientific Research Paradigm[J]. Bulletin of Chinese Academy of Sciences, 2024, 39(1): 1-9.)
[23] 张晓林. 从Informetrics到Decision Intelligence:呼唤知识发现研究的范式演变[J]. 数据分析与知识发现, 2019, 3 (1): 1-2.
[24] 张晓林. 支持复杂场景下的决策智能——数据分析与知识发现的新挑战[J]. 数据分析与知识发现, 2021, 5(1): 1-2.
[25] 张晓林. 从猿到人:探索知识服务的凤凰涅槃之路[J]. 数据分析与知识发现. 2023, 7 (3): 1-4.
[26] Kauffman S A, Roli A. A Third Transition in Science?[J]. Interface Focus, 2023, 13(3):20220063.
doi: 10.1098/rsfs.2022.0063
[27] 新华社. 习近平在中共中央政治局第十一次集体学习时强调:加快发展新质生产力扎实推进高质量发展[EB/OL].(2024-02-01). [2024-03-03]. https://www.gov.cn/yaowen/liebiao/202402/content_6929446.htm.
[28] 决策智能:方兴未艾的人工智能新方向[EB/OL]. [2024-03-05]. http://news.sciencenet.cn/htmlnews/2020/11/448150.shtm.
[29] 王学昭, 王燕鹏, 赵萍, 等. 场景化智慧数据驱动的情报研究模式:概念、技术框架和实验验证[J]. 数据分析与知识发现, 2023, 7(5):1-9.
[29] (Wang Xuezhao, Wang Yanpeng, Zhao Ping, et al. Scenarized Intelligent Data-Driven Research Model: Concept, Technical Framework, and Experimental Verification[J]. Data Analysis and Knowledge Discovery, 2023, 7(5): 1-9.)
[30] Hinton G, Vinyals O, Dean J. Distilling the Knowledge in a Neural Network[OL]. arXiv Preprint, arXiv: 1503.02531.
[31] 胡智慧等. 全球化条件下科技资源配置机制研究[R]. 中国科学院发展规划局, 2014.
[32] 李旭. 社会系统动力学[M]. 上海: 复旦大学出版社, 2009.
[32] (Li Xu. Social System Dynamics[M]. Shanghai: Fudan University Press, 2009.)
[33] 陈挺. 面向诊断的计算政策学分析[D]. 北京: 中国科学院大学, 2023.
[33] (Chen Ting. Research on Diagnostic-oriented Computational Analysis Policy Methods[D]. Beijing: University of Chinese Academy of Sciences, 2023.)
[34] Dias M F, Pedrozo E A, Da Silva T N. The Innovation Process as a Complex Structure with Multilevel Rules[J]. Journal of Evolutionary Economics, 2014, 24: 1067-1084.
doi: 10.1007/s00191-014-0384-2
[35] 小样本提示[EB/OL]. [2024-02-03]. https://www.promptingguide.ai/zh/techniques/fewshot.
[36] Chu Z, Chen J C, Chen Q L, et al. A Survey of Chain of Thought Reasoning: Advances, Frontiers and Future[OL]. arXiv Preprint, arXiv: 2309.15402.
[37] Zhang Z S, Zhang A, Li M, et al. Automatic Chain of Thought Prompting in Large Language Models[OL]. arXiv Preprint, arXiv: 2210.03493.
[38] Yao S Y, Yu D, Zhao J, et al. Tree of Thoughts: Deliberate Problem Solving with Large Language Models[OL]. arXiv Preprint, arXiv: 2305.10601.
[39] Besta M, Blach N, Kubicek A, et al. Graph of Thoughts: Solving Elaborate Problems with Large Language Models[OL]. arXiv Preprint, arXiv: 2308.09687.
[40] Wang J N, Sun Q S, Chen N, et al. Boosting Language Models Reasoning with Chain-of-Knowledge Prompting[OL]. arXiv Preprint, arXiv: 2306.06427.
[41] Gao Y F, Xiong Y, Gao X Y. et al. Retrieval-Augmented Generation for Large Language Models: A Survey[OL]. arXiv Preprint, arXiv: 2312.10997.
[42] Ektefaie Y, Dasoulas G, Noori A, et al. Multimodal Learning with Graphs[J]. Nature Machine Intelligence, https://doi.org/10.1038/s42256-023-00624-6.
[43] Xi Z H, Chen W X, Guo X, et. al. The Rise and Potential of Large Language Model Based Agents: A Survey[OL]. arXiv Preprint, arXiv: 2309.07864.
[44] Yang H, Yue S F, He Y Z. Auto-GPT for Online Decision Making: Benchmarks and Additional Opinions[OL]. arXiv Preprint, arXiv: 2306.02224.
[45] Boiko D A, MacKnight R, Gomes G. Emergent Autonomous Scientific Research Capabilities of Large Language Models[OL]. arXiv Preprint, arXiv: 2304.05332.
[46] Bran A M, Cox S, Schilter O, et al. ChemCrow: Augmenting Large-Language Models with Chemistry Tools[OL]. arXiv Preprint, arXiv: 2304.05376.
[47] LangChain中文网[EB/OL]. [2024-03-03]. https://www.langchain.com.cn/.
[48] AI-Engineer-Foundation/agent-protocol[EB/OL]. [2024-03-15]. https://github.com/AI-Engineer-Foundation/agent-protocol.
[49] Zhuge M C, Liu H Z, Faccio F, et al. Mindstorms in Natural Language-Based Societies of Mind[OL]. arXiv Preprint, arXiv: 2305.17066.
[50] Zhuge M C, Wang W Y, Kirsch L, et al. Language Agents as Optimizable Graphs[OL]. arXiv Preprint, arXiv: 2402.16823.
[51] 顾险峰. Sora物理悖谬的几何解释[OL].[2024-02-26]. https://b23.tv/mgtrr44.
[52] 郑庆华. 大数据知识工程的理论与应用[R]. 人工智能大模型技术高峰论坛, 2023.
[53] 将大模型与小模型结合的8种常用策略[EB/OL].[2024-03-05]. https://blog.csdn.net/weixin_42645636/article/details/135680706.
[54] Siegenfeld A F, Bar-Yam Y. An Introduction to Complex Systems Science and Its Applications[OL]. arXiv Preprint, arXiv: 1912.05088.
[55] 王建硕. ChatGPT开创的机器人和机器人对话的世界[R]. AIGC创建者大会, 2023.
[56] 张婕. AIGC与产业创新[R]. AIGC创建者大会, 2023.
[1] Du Xinyu, Li Ning. Identifying Moves in Full-Text Chinese Academic Papers[J]. 数据分析与知识发现, 2024, 8(2): 74-83.
[2] Bao Ritong, Sun Haichun. An Overview of Research on Multi-Document Summarization[J]. 数据分析与知识发现, 2024, 8(2): 17-32.
[3] Xiang Shuxuan, Cao Yujie, Mao Jin. Computing Patent Similarity Based on Hierarchical Feature of Claims[J]. 数据分析与知识发现, 2024, 8(2): 33-43.
[4] Gu Yan, Zheng Kaihong, Hu Yongjun, Song Yishan, Liu Dongping. Support for Cross-Domain Methods of Identifying Fake Comments of Chinese[J]. 数据分析与知识发现, 2024, 8(2): 84-98.
[5] Li Xuesi, Zhang Zhixiong, Wang Yufei, Liu Yi. A Review on Methods for Domain Knowledge Evolution Analysis[J]. 数据分析与知识发现, 2024, 8(1): 1-15.
[6] Fu Yun, Zhu Liya, Li Dan, Sun Mengge, Zhang Jianfeng, Liu Xiwen. ULEO: Unified Language of Experiment Operations for Representation of Synthesis Protocols[J]. 数据分析与知识发现, 2024, 8(1): 30-39.
[7] Lyu Xueqiang, Yang Yuting, Xiao Gang, Li Yuxian, You Xindong. Extracting Long Terms from Sparse Samples[J]. 数据分析与知识发现, 2024, 8(1): 135-145.
[8] Tang Xuemei, Su Qi, Wang Jun. Classifying Ancient Chinese Text Relations with Entity Information[J]. 数据分析与知识发现, 2024, 8(1): 114-124.
[9] Bao Tong, Zhang Chengzhi. Extracting Chinese Information with ChatGPT:An Empirical Study by Three Typical Tasks[J]. 数据分析与知识发现, 2023, 7(9): 1-11.
[10] Zhang Yingyi, Zhang Chengzhi, Zhou Yi, Chen Bikun. ChatGPT-Based Scientific Paper Entity Recognition: Performance Measurement and Availability Research[J]. 数据分析与知识发现, 2023, 7(9): 12-24.
[11] Liu Jiangfeng, Feng Yutong, Liu Liu, Shen Si, Wang Dongbo. Structural Recognition of Abstracts of Academic Text Enhanced by Domain Bilingual Data[J]. 数据分析与知识发现, 2023, 7(8): 105-118.
[12] Xue Gang, Liu Shifeng, Gong Daqing, Zhang Pei, Liu Zhongliang. Identifying Abnormal Riding Behaviour in Urban Rail Transit with Multi-Source Data[J]. 数据分析与知识发现, 2023, 7(7): 46-57.
[13] Deng Yuyang, Wu Dan. Chinese-Tibetan Bilingual Named Entity Recognition for Traditional Tibetan Festivals[J]. 数据分析与知识发现, 2023, 7(7): 125-135.
[14] Song Peiyan, Long Chenxiang, Li Yiran, Ni Xuening. Identifying Academic Expertise of Researchers Based on Iceberg Model[J]. 数据分析与知识发现, 2023, 7(6): 50-60.
[15] Chen Nuo, Li Xuhui. An Event Extraction Method Based on Template Prompt Learning[J]. 数据分析与知识发现, 2023, 7(6): 86-98.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn