Please wait a minute...
Advanced Search
数据分析与知识发现  2022, Vol. 6 Issue (9): 113-124     https://doi.org/10.11925/infotech.2096-3467.2021.1452
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
融合患者体征与用药数据的图神经网络药物推荐方法研究*
成全(),佘德昕
福州大学经济与管理学院 福州 350108
Drug Recommendation Based on Graph Neural Network with Patient Signs and Medication Data
Cheng Quan(),She Dexin
School of Economics and Management, Fuzhou University, Fuzhou 350108, China
全文: PDF (2381 KB)   HTML ( 28
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 通过融合病患体征信息与用药数据,利用图神经网络技术进行药物精准推荐,以增强疾病诊疗过程中药物推荐的科学性与合理性。【方法】 建立基于图神经网络(GNN)的“异常体征”与“药品”传递关系模型,设计了具有体征感知功能的药物精准推荐方案。构建“异常体征-病患-药品”异构图,采用关系图卷积神经网络(R-GCN)编码器学习具有体征感知的节点表示,通过设计基于体征感知交互的解码器,融合异常体征信息,实现对药物的精准推荐。【结果】 以MIMIC-Ⅲ数据集中的三类疾病诊疗数据为对象开展实证研究。本文设计的药物推荐方案较SVD、NeuMF、NGCF模型在Recall@20指标上分别提高5.76、5.33、0.91个百分点;在NDCG@20指标上分别提高了5.03、4.25、2.67个百分点。【局限】 该药物推荐方案未考虑病患药物使用随疾病发展时间的动态变化情况。【结论】 融合病患体征信息与用药数据的图神经网络药物推荐方法具有有效性和可行性,能够感知病患体征对用药的影响,为融合多维度信息开展药物精准推荐研究提供了基础。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
成全
佘德昕
关键词 智慧医疗图神经网络深度学习药物精准推荐    
Abstract

[Objective] This paper proposes a new drug recommendation algorithm based on the graph neural network integrating patient signs and medication history, aiming to improve the illness diagnosis and treatments. [Methods] First, we constructed a transitive relationship model for abnormal signs and drugs based on the Graph Neural Network(GNN). Then, we designed a precise drug recommendation plan with sign perception and built a heterogeneous graph for the “sign-patient-drug” relationship. Third, our model learned the node representation with sign perception using the R-GCN encoder. Finally, we designed a sign-aware interaction decoder, which integrated the abnormal signs to recommend drugs accurately. [Results] We examined the proposed model with diagnosis and treatment records of three types of diseases from the MIMIC-Ⅲ dataset. Compared with the SVD, NeuMF and NGCF models, the proposed method’s Recall@20 value increased by 5.76, 5.33 and 0.91 percentage point, respectively. Meanwhile, it increased the NDCG@20 value by 5.03, 4.25 and 2.67 percentage point. [Limitations] Our method did not include the dynamic changes of patients’ drug use due to the developments of diseases. [Conclusions] The proposed drug recommendation method is effective and feasible. This model could perceive the impacts of patient signs on medication, which lays foundations for precise drug recommendation algorithm integrating multi-dimensional information.

Key wordsSmart Medical    Graph Neural Network    Deep Learning    Precise Drug Recommendation
收稿日期: 2021-12-25      出版日期: 2022-10-26
ZTFLH:  TP39  
基金资助:*国家社会科学基金项目(19BTQ072)
通讯作者: 成全,ORCID:0000-0002-7302-4527     E-mail: chengquan@fzu.edu.cn
引用本文:   
成全, 佘德昕. 融合患者体征与用药数据的图神经网络药物推荐方法研究*[J]. 数据分析与知识发现, 2022, 6(9): 113-124.
Cheng Quan, She Dexin. Drug Recommendation Based on Graph Neural Network with Patient Signs and Medication Data. Data Analysis and Knowledge Discovery, 2022, 6(9): 113-124.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2021.1452      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2022/V6/I9/113
Fig.1  “体征-病患-药品”异构图
Fig.2  融合病患体征感知与用药数据的药物推荐模型
Fig.3  基于体征感知的药物推荐模型
Fig.4  不同类型节点消息聚合
病案ID 药物名称
143045 Atropine Sulfate
143045 Zolpidem Tartrate
143045 Midazolam HCl
129635 Clopidogrel Bisulfate
129635 Humulin-R Insulin
Table 1  病患用药记录表
疾病名称 病患数量
先天性冠状动脉粥样硬化 2 819
败血症 1 729
急性呼吸衰竭 935
Table 2  疾病人数统计表
病案ID
HADM_ID
检查项ID
ITEMID
检查项
LABITEM
日期
DATE
检查状态
FALG
143045 50808 Free Calcium 2167-01-10 abnormal
143045 51221 Hematocrit 2167-01-10 abnormal
143045 51265 Platelet Count 2167-01-10 abnormal
143045 51301 White Blood Cells 2167-01-10 abnormal
Table 3  病患体征数据示例
病案ID 病患体征异常项集合
143045 51493, 51301, 51279, 51275, 51274, 51221, 50931
164982 50902, 50893, 50882, 50820, 51301, 51279, 51265, 51249, 51222, 51221, 50821, 50809, 50818, 51274, 51237, 50822, 50811, 50808
122973 51493, 50813, 51301, 51279, 51277, 51274, 51255, 51251, 51244, 51237, 51222, 51221, 51006, 50983, 50970, 50956, 50931, 50912, 50910, 50893, 50885, 50882, 50878, 50863, 50862, 50861, 51362
Table 4  病患体征异常项数据
Fig.5  SA-GCN模型指标分析
模型 AUC Recall@10 NDCG@10 Recall@20 NDCG@20
SA-GCN 0.925 4 0.356 4 0.305 7 0.484 6 0.351 8
SA-GCN-1 0.921 7 0.337 8 0.276 9 0.467 3 0.313 7
SA-GCN-2 0.923 7 0.348 5 0.283 2 0.479 0 0.331 6
Table 5  消融实验结果对比
Fig.6  节点表示对比
指标 SA-GCN SVD NeuMF NGCF
AUC 0.925 4 0.914 1 0.917 5 0.922 7
Table 6  模型测试集AUC对比
模型 Recall@10 NDCG@10 Recall@20 NDCG@20
SA-GCN 0.356 4 0.305 7 0.484 6 0.351 7
SVD 0.302 6 0.256 9 0.427 0 0.301 4
NeuMF 0.327 1 0.275 0 0.431 3 0.309 2
NGCF 0.351 2 0.280 2 0.475 5 0.325 0
Table 7  TopN推荐结果
[1] 陈耶拉, 耿秀丽. 基于改进协同过滤的个性化产品服务系统方案推荐[J]. 计算机集成制造系统, 2021, 27(1): 240-248.
[1] ( Chen Yela, Geng Xiuli. Recommendation of Personalized Product-Service System Scheme Based on Improved Collaborative Filtering[J]. Computer Integrated Manufacturing Systems, 2021, 27(1): 240-248.)
[2] 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647.
[2] ( Huang Liwei, Jiang Bitao, Lv Shouye, et al. Survey on Deep Learning Based Recommender Systems[J]. Chinese Journal of Computers, 2018, 41(7): 1619-1647.)
[3] 彭春婷, 阮冰. 实验室检查对感染性发热的诊断价值[J]. 中国实用内科杂志, 2016, 36(12): 1025-1028.
doi: 10.7504/nk2016110102
[3] ( Peng Chunting, Ruan Bing. Diagnosis Value of Laboratory Tests for Infectious Fever[J]. Chinese Journal of Practical Internal Medicine, 2016, 36(12): 1025-1028.)
doi: 10.7504/nk2016110102
[4] 李鹏飞, 鲁法明, 包云霞, 等. 基于医疗过程挖掘与患者体征的药物推荐方法[J]. 计算机集成制造系统, 2020, 26(6): 1668-1678.
[4] ( Li Pengfei, Lu Faming, Bao Yunxia, et al. Drug Recommendation Method Based on Medical Process Mining and Patient Signs[J]. Computer Integrated Manufacturing Systems, 2020, 26(6): 1668-1678.)
[5] Almirall D, Compton S N, Gunlicks-Stoessel M, et al. Designing a Pilot Sequential Multiple Assignment Randomized Trial for Developing an Adaptive Treatment Strategy[J]. Statistics in Medicine, 2012, 31(17): 1887-1902.
doi: 10.1002/sim.4512 pmid: 22438190
[6] Norén G N, Bate A, Hopstadius J, et al. Temporal Pattern Discovery for Trends and Transient Effects: Its Application to Patient Records[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2008: 963-971.
[7] Wright A, Chen E S, Maloney F L. An Automated Technique for Identifying Associations Between Medications, Laboratory Results and Problems[J]. Journal of Biomedical Informatics, 2010, 43(6): 891-901.
doi: 10.1016/j.jbi.2010.09.009 pmid: 20884377
[8] Wright A P, Wright A T, McCoy A B, et al. The Use of Sequential Pattern Mining to Predict Next Prescribed Medications[J]. Journal of Biomedical Informatics, 2015, 53: 73-80.
doi: 10.1016/j.jbi.2014.09.003 pmid: 25236952
[9] Wang H Q, Wu Y Y, Gao C, et al. Medication Combination Prediction Using Temporal Attention Mechanism and Simple Graph Convolution[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(10): 3995-4004.
doi: 10.1109/JBHI.2021.3082548
[10] Choi E, Bahadori M T, Schuetz A, et al. Doctor AI: Predicting Clinical Events via Recurrent Neural Networks[J]. JMLR Workshop and Conference Proceedings, 2016, 56: 301-318.
pmid: 28286600
[11] Zhang Y T, Chen R, Tang J, et al. LEAP: Learning to Prescribe Effective and Safe Treatment Combinations for Multimorbidity[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017: 1315-1324.
[12] Song J, Wang Y Y, Tang S L, et al. Local-Global Memory Neural Network for Medication Prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4): 1723-1736.
doi: 10.1109/TNNLS.2020.2989364
[13] An Y, Zhang L, You M, et al. MeSIN: Multilevel Selective and Interactive Network for Medication Recommendation[J]. Knowledge-Based Systems, 2021, 233: 107534.
doi: 10.1016/j.knosys.2021.107534
[14] Zhou J, Cui G Q, Hu S D, et al. Graph Neural Networks: A Review of Methods and Applications[J]. AI Open, 2020, 1: 57-81.
doi: 10.1016/j.aiopen.2021.01.001
[15] Hamilton W L, Ying R, Leskovec J. Inductive Representation Learning on Large Graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017: 1025-1035.
[16] Ying R, He R N, Chen K F, et al. Graph Convolutional Neural Networks for Web-Scale Recommender Systems[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 974-983.
[17] Wang X, Chai Y B, Li H, et al. Link Prediction in Heterogeneous Information Networks: An Improved Deep Graph Convolution Approach[J]. Decision Support Systems, 2021, 141: 113448.
doi: 10.1016/j.dss.2020.113448
[18] van den Berg R, Kipf T N, Welling M. Graph Convolutional Matrix Completion[OL]. arXiv Preprint, arXiv: 1706.02263.
[19] 苏静, 许天琪, 张贤坤, 等. 基于图卷积与外积的协同过滤推荐模型[J]. 计算机应用研究, 2021, 38(10): 3044-3048.
[19] ( Su Jing, Xu Tianqi, Zhang Xiankun, et al. Collaborative Filtering Recommendation Model Based on Graph Convolution and Cross Product[J]. Application Research of Computers, 2021, 38(10): 3044-3048.)
[20] Wang X, He X N, Wang M, et al. Neural Graph Collaborative Filtering[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2019: 165-174.
[21] Shang J Y, Xiao C, Ma T F, et al. GAMENet: Graph Augmented MEmory Networks for Recommending Medication Combination[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 1126-1133.
doi: 10.1609/aaai.v33i01.33011126
[22] Jin Y Y, Zhang W, He X N, et al. Syndrome-Aware Herb Recommendation with Multi-Graph Convolution Network[C]// Proceedings of the 36th International Conference on Data Engineering. IEEE, 2020: 145-156.
[23] Mao C, Yao L, Luo Y,. MedGCN: Graph Convolutional Networks for Multiple Medical Tasks[OL]. arXiv Preprint, arXiv: 1904.00326.
[24] Liu S C, Li T, Ding H Y, et al. A Hybrid Method of Recurrent Neural Network and Graph Neural Network for Next-Period Prescription Prediction[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(12): 2849-2856.
doi: 10.1007/s13042-020-01155-x
[25] Schlichtkrull M, Kipf T N, Bloem P, et al. Modeling Relational Data with Graph Convolutional Networks[C]// Proceedings of the 15th Extended Semantic Web Conference. 2018: 593-607.
[26] Zheng Y, Gao C, He X N, et al. Price-Aware Recommendation with Graph Convolutional Networks[C]// Proceedings of the 36th International Conference on Data Engineering. IEEE, 2020: 133-144.
[27] Johnson A E W, Pollard T J, Shen L, et al. MIMIC-III, a Freely Accessible Critical Care Database[J]. Scientific Data, 2016, 3: 160035.
doi: 10.1038/sdata.2016.35
[28] He X N, Liao L Z, Zhang H W, et al. Neural Collaborative Filtering[C]// Proceedings of the 26th International Conference on World Wide Web. 2017: 173-182.
[1] 张若琦, 申建芳, 陈平华. 结合GNN、Bi-GRU及注意力机制的会话序列推荐*[J]. 数据分析与知识发现, 2022, 6(6): 46-54.
[2] 王露, 乐小虬. 科技论文引用内容分析研究进展[J]. 数据分析与知识发现, 2022, 6(4): 1-15.
[3] 郑潇, 李树青, 张志旺. 基于评分数值分析的用户项目质量测度及其在深度推荐模型中的应用*[J]. 数据分析与知识发现, 2022, 6(4): 39-48.
[4] 余传明, 林虹君, 张贞港. 基于多任务深度学习的实体和事件联合抽取模型*[J]. 数据分析与知识发现, 2022, 6(2/3): 117-128.
[5] 张云秋, 李博诚, 陈妍. 面向不平衡数据的电子病历自动分类研究*[J]. 数据分析与知识发现, 2022, 6(2/3): 233-241.
[6] 张芳丛, 秦秋莉, 姜勇, 庄润涛. 基于RoBERTa-WWM-BiLSTM-CRF的中文电子病历命名实体识别研究[J]. 数据分析与知识发现, 2022, 6(2/3): 251-262.
[7] 胡雅敏, 吴晓燕, 陈方. 基于机器学习的技术术语识别研究综述[J]. 数据分析与知识发现, 2022, 6(2/3): 7-17.
[8] 周泽聿,王昊,赵梓博,李跃艳,张小琴. 融合关联信息的GCN文本分类模型构建及其应用研究*[J]. 数据分析与知识发现, 2021, 5(9): 31-41.
[9] 顾耀文, 张博文, 郑思, 杨丰春, 李姣. 基于图注意力网络的药物ADMET分类预测模型构建方法*[J]. 数据分析与知识发现, 2021, 5(8): 76-85.
[10] 徐月梅, 王子厚, 吴子歆. 一种基于CNN-BiLSTM多特征融合的股票走势预测模型*[J]. 数据分析与知识发现, 2021, 5(7): 126-138.
[11] 赵丹宁,牟冬梅,白森. 基于深度学习的科技文献摘要结构要素自动抽取方法研究*[J]. 数据分析与知识发现, 2021, 5(7): 70-80.
[12] 黄名选,蒋曹清,卢守东. 基于词嵌入与扩展词交集的查询扩展*[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[13] 钟佳娃,刘巍,王思丽,杨恒. 文本情感分析方法及应用综述*[J]. 数据分析与知识发现, 2021, 5(6): 1-13.
[14] 马莹雪,甘明鑫,肖克峻. 融合标签和内容信息的矩阵分解推荐方法*[J]. 数据分析与知识发现, 2021, 5(5): 71-82.
[15] 张国标,李洁. 融合多模态内容语义一致性的社交媒体虚假新闻检测*[J]. 数据分析与知识发现, 2021, 5(5): 21-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn