Please wait a minute...
Advanced Search
数据分析与知识发现  2022, Vol. 6 Issue (6): 46-54     https://doi.org/10.11925/infotech.2096-3467.2021.1105
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
结合GNN、Bi-GRU及注意力机制的会话序列推荐*
张若琦,申建芳(),陈平华
广东工业大学计算机学院 广州 510006
Session Sequence Recommendation with GNN, Bi-GRU and Attention Mechanism
Zhang Ruoqi,Shen Jianfang(),Chen Pinghua
School of Computers, Guangdong University of Technology, Guangzhou 510006, China
全文: PDF (1602 KB)   HTML ( 23
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 解决传统会话序列推荐仅使用一次建模难以兼顾商品全面信息表达和序列中用户全局/短期兴趣捕获的问题。【方法】 将历史会话构建有向会话图,利用图神经网络学习有向会话图中的节点信息表达,丰富节点嵌入。使用双向门控循环神经网络和注意力机制捕获会话序列中用户的全局和短期兴趣,以生成推荐列表。【结果】 与次优模型SRGNN相比,在Yoochoose数据集上平均排序倒数提升1.02%,在Diginetica数据集上精确度提升2.11%。【局限】 本文模型在处理长序列时结果较差。【结论】 本文模型能够更好地建模用户行为序列,有效预测用户可能行为,提高推荐效率。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张若琦
申建芳
陈平华
关键词 序列推荐会话图神经网络Bi-GRU注意力机制    
Abstract

[Objective] This study aims to improve the traditional session sequence recommendation algorithm, whose one-time modeling technique cannot represent the product’s comprehensive information or capture the user’s global/short-term interests. [Methods] First, we constructed a directed session graph based on the historical sessions, and used the GNN to learn their node information representation to enrich node embeddings. Then, we captured the user’s global and short-term interests in session sequences with Bi-GRU and attention mechanism to generate recommendation lists. [Results] We examined our new algorithm with the Yoochoose and the Diginetica datasets. Compared with the suboptimal model, the Mean Reciprocal Rank of our algorithm improved by 1.02%, and the precision improved by 2.11%, respectively. [Limitations] The proposed model did not work well with the long sequences. [Conclusions] Our new algorithm can more effectively model the user behavior sequence, predict the user’s possible actions, and improve the recommendation lists.

Key wordsSequential Recommendation    Session    GNN    Bi-GRU    Attention Mechanism
收稿日期: 2021-09-27      出版日期: 2022-07-28
ZTFLH:  TP391  
基金资助:*广东省重点领域研发计划项目(2020B0101100001);广东省重点领域研发计划项目(2021B0101200002);广东省省级科技计划项目(2020B1010010010)
通讯作者: 申建芳, ORCID:0000-0002-6247-2682     E-mail: tysjf@gdut.edu.cn
引用本文:   
张若琦, 申建芳, 陈平华. 结合GNN、Bi-GRU及注意力机制的会话序列推荐*[J]. 数据分析与知识发现, 2022, 6(6): 46-54.
Zhang Ruoqi, Shen Jianfang, Chen Pinghua. Session Sequence Recommendation with GNN, Bi-GRU and Attention Mechanism. Data Analysis and Knowledge Discovery, 2022, 6(6): 46-54.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2021.1105      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2022/V6/I6/46
Fig.1  模型框架
Fig.2  有向会话图
Fig.3  邻接矩阵
Fig.4  双向门控循环神经网络模块
Fig.5  门控循环单元内部结构
数据 Yoochoose Diginetica
点击数 557 248 982 961
项目数 16 766 43 097
平均长度 6.16 5.12
Table 1  数据集介绍
方法

评价指标
Yoochoose Diginetica
P @ 20 M R R @ 20 P @ 20 M R R @ 20
Item-KNN 51.60 21.81 28.35 9.45
FPMC 45.62 15.01 31.55 8.92
GRU4Rec 60.64 22.89 43.82 15.46
STAMP 68.74 29.67 45.64 14.32
SRGNN 69.27 29.67 49.04 16.53
GNN-DBLGRU-TA 70.23 30.31 50.13 16.63
GNN-BiGRU-TA 70.54 30.69 51.15 17.34
Table 2  实验结果对比
属性

数据集
Diginetica 1 Diginetica 3 Diginatica 5 Diginatica 7
训练集
会话数
612 858 573 133 455 168 333 119
测试集
会话数
51 751 48 432 48 432 27 978
项目数 39 056 37 096 31 987 26 336
序列平均
长度
4.995 3 5.890 2 7.322 3 8.647 4
Table 3  Diginetica数据集不同长度序列属性
Fig.6  序列长度对模型性能的影响
Fig.7  模型对比
[1] Scarselli F, Gori M, Tsoi A C, et al. The Graph Neural Network Model[J]. IEEE Transactions on Neural Networks, 2009, 20(1): 61-80.
doi: 10.1109/TNN.2008.2005605 pmid: 19068426
[2] Yap G E, Li X L, Yu P S. Effective Next-Items Recommendation via Personalized Sequential Pattern Mining[C]// Proceedings of the 2012 Database Systems for Advanced Applications, 2012: 48-64.
[3] Garcin F, Dimitrakakis C, Faltings B. Personalized News Recommendation with Context Trees[C]// Proceedings of the 7th ACM Conference on Recommender Systems. ACM, 2013: 105-112.
[4] Feng S S, Li X T, Zeng Y F, et al. Personalized Ranking Metric Embedding for Next New POI Recommendation[C]// Proceedings of the 24th International Joint Conference on Artificial Intelligence. AAAI Press, 2015: 2069-2075.
[5] Rendle S, Freudenthaler C, Schmidt-Thieme L. Factorizing Personalized Markov Chains for Next-Basket Recommendation[C]// Proceedings of the 19th International Conference on World Wide Web. ACM Press, 2010: 811-820.
[6] Wang P F, Guo J F, Lan Y Y, et al. Learning Hierarchical Representation Model for Next Basket Recommendation[C]// Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2015: 403-412.
[7] Wang S J, Hu L, Cao L B. Attention Based Transactional Context Embedding for Next-Item Recommendation[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. AAAI Press, 2018: 2532-2539.
[8] He R N, Kang W C, McAuley J. Translation-Based Recommendation: A Scalable Method for Modeling Sequential Behavior[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018: 5264-5268.
[9] Wu C Y, Ahmed A, Beutel A, et al. Recurrent Recommender Networks[C]// Proceedings of the 10th ACM International Conference on Web Search and Data Mining. ACM, 2017: 495-503.
[10] Hidasi B, Karatzoglou A, Baltrunas L, et al. Session-Based Recommendations with Recurrent Neural Networks[C]// Proceedings of the 4th International Conference on Learning Representations. ICLR, 2016:1-10.
[11] Tang J X, Wang K. Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding[C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. ACM, 2018: 565-573.
[12] Yuan F J, Karatzoglou A, Arapakis I, et al. A Simple Convolutional Generative Network for Next Item Recommendation[C]// Proceedings of the 12th ACM International Conference on Web Search and Data Mining. ACM, 2019: 582-590.
[13] 倪维健, 郭浩宇, 刘彤, 等. 基于多头自注意力神经网络的购物篮推荐方法[J]. 数据分析与知识发现, 2020, 4(2/3): 68-77.
[13] (Ni Weijian, Guo Haoyu, Liu Tong, et al. Online Product Recommendation Based on Multi-Head Self-Attention Neural Networks[J]. Data Analysis and Knowledge Discovery, 2020, 4(2/3): 68-77.)
[14] Zhou G R, Song C R, Zhu X Q, et al. Deep Interest Network for Click-through Rate Prediction[OL]. arXiv Preprint, arXiv: 1706.06978.
[15] Zhou C, Bai J Z, Song J S, et al. ATRANK: An Attention-Based User Behavior Modeling Framework for Recommendation[C]// Proceedings of the 32nd Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence. AAAI Press, 2018: 4564-4571.
[16] Zhou G R, Mou N, Fan Y, et al. Deep Interest Evolution Network for Click-through Rate Prediction[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 5941-5948.
[17] Lv F Y, Jin T W, Yu C L, et al. SDM: Sequential Deep Matching Model for Online Large-Scale Recommender System[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. ACM, 2019: 2635-2643.
[18] Ma C, Ma L H, Zhang Y X. Memory Augmented Graph Neural Networks for Sequential Recommendation[C]// Proceedings of the 34th Association for the Advancement of Artificial Intelligence Conference on Artificial Intelligence. AAAI Press, 2020: 5045-5052.
[19] Wu S, Tang Y Y, Zhu Y Q, et al. Session-Based Recommendation with Graph Neural Networks[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2019, 33: 346-353.
[20] Zhou G R, Song C R, Zhu X Q, et al. Deep Interest Network for Click-Through Rate Prediction[OL]. arXiv Preprint, arXiv: 1706.06978.
[21] Wang Z Y, Wei W, Cong G, et al. Global Context Enhanced Graph Neural Networks for Session-Based Recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020: 169-178.
[22] Xu C F, Zhao P P, Liu Y C, et al. Graph Contextualized Self-Attention Network for Session-Based Recommendation[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019: 3940-3946.
[23] Chung J, Gulcehre C, Cho K, et al. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[OL]. arXiv Preprint, arXiv: 1412.3555.
[24] Liu Q, Zeng Y F, Mokhosi R, et al. STAMP: Short-Term Attention/Memory Priority Model for Session-Based Recommendation[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2018: 1831-1839.
[25] Sarwar B, Karypis G, Konstan J, et al. Item-Based Collaborative Filtering Recommendation Algorithms[C]// Proceedings of the 10th International Conference on World Wide Web. ACM Press, 2001: 285-295.
[1] 叶瀚,孙海春,李欣,焦凯楠. 融合注意力机制与句向量压缩的长文本分类模型[J]. 数据分析与知识发现, 2022, 6(6): 84-94.
[2] 王永生, 王昊, 虞为, 周泽聿. 融合结构和内容的方志文本人物关系抽取方法*[J]. 数据分析与知识发现, 2022, 6(2/3): 318-328.
[3] 郭航程, 何彦青, 兰天, 吴振峰, 董诚. 基于Paragraph-BERT-CRF的科技论文摘要语步功能信息识别方法研究*[J]. 数据分析与知识发现, 2022, 6(2/3): 298-307.
[4] 徐月梅, 樊祖薇, 曹晗. 基于标签嵌入注意力机制的多任务文本分类模型*[J]. 数据分析与知识发现, 2022, 6(2/3): 105-116.
[5] 谢星雨, 余本功. 基于MFFMB的电商评论文本分类研究*[J]. 数据分析与知识发现, 2022, 6(1): 101-112.
[6] 范涛,王昊,吴鹏. 基于图卷积神经网络和依存句法分析的网民负面情感分析研究*[J]. 数据分析与知识发现, 2021, 5(9): 97-106.
[7] 顾耀文, 张博文, 郑思, 杨丰春, 李姣. 基于图注意力网络的药物ADMET分类预测模型构建方法*[J]. 数据分析与知识发现, 2021, 5(8): 76-85.
[8] 杨晗迅, 周德群, 马静, 罗永聪. 基于不确定性损失函数和任务层级注意力机制的多任务谣言检测研究*[J]. 数据分析与知识发现, 2021, 5(7): 101-110.
[9] 谢豪,毛进,李纲. 基于多层语义融合的图文信息情感分类研究*[J]. 数据分析与知识发现, 2021, 5(6): 103-114.
[10] 尹鹏博,潘伟民,张海军,陈德刚. 基于BERT-BiGA模型的标题党新闻识别研究*[J]. 数据分析与知识发现, 2021, 5(6): 126-134.
[11] 余本功,朱晓洁,张子薇. 基于多层次特征提取的胶囊网络文本分类研究*[J]. 数据分析与知识发现, 2021, 5(6): 93-102.
[12] 韩普,张展鹏,张明淘,顾亮. 基于多特征融合的中文疾病名称归一化研究*[J]. 数据分析与知识发现, 2021, 5(5): 83-94.
[13] 段建勇,魏晓鹏,王昊. 基于多角度共同匹配的多项选择机器阅读理解模型 *[J]. 数据分析与知识发现, 2021, 5(4): 134-141.
[14] 王雨竹,谢珺,陈波,续欣莹. 基于跨模态上下文感知注意力的多模态情感分析 *[J]. 数据分析与知识发现, 2021, 5(4): 49-59.
[15] 余本功, 张书文. 基于BAGCNN的方面级别情感分析研究*[J]. 数据分析与知识发现, 2021, 5(12): 37-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn