Please wait a minute...
Data Analysis and Knowledge Discovery  2023, Vol. 7 Issue (6): 148-160    DOI: 10.11925/infotech.2096-3467.2022.0535
Current Issue | Archive | Adv Search |
Deep Learning Model of Drug Recommendation Based on Patient Similarity Analysis
Wu Jialun1,Zhang Ruonan2,Kang Wulin3,Yuan Puwei3()
1School of Computer Science and Technology, Xi’an Jiaotong University, Xi’an 710049, China
2Library of Xi’an Jiaotong University, Xi’an 710049, China
3Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang 712046, China
Download: PDF (1121 KB)   HTML ( 23
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper develops a deep learning model that accurately predicts drug combinations by analyzing structured time-series medical data and patient similarity. [Methods] Our model learned comprehensive patient representations by parsing structured time-series data through two attention mechanisms. Then, we calculated the patients’ similarity to enrich their representation and transformed the drug recommendation problem into a multi-label learning task. [Results] We examined the new model with the MIMIC-III dataset. Compared to other mainstream models, the proposed one achieved improvements of at least 1.09%, 2.38%, 1.40%, and 1.08% in DDI rate, Jaccard similarity, PRAUC, and F1-score, respectively. [Limitations] Our model should have included the prior domain knowledge from biomedical fields. More research is needed to thoroughly investigate the noise in the data and potential issues in clinical applications. [Conclusions] The proposed method can learn comprehensive patient representations and enhance the safety and accuracy of drug recommendation tasks.

Key wordsDrug Recommendation      Electronic Health Records      Patient Representation Learning      Deep Learning     
Received: 25 May 2022      Published: 09 November 2022
ZTFLH:  TP391  
  G35  
Fund:2021 Key R&D Plan of Shaanxi Provincial Department of Science and Technology “Joint Key Projects of Colleges and Universities”(2021GXLH-Z-095);2021 Shaanxi Provincial Department of Education Scientific Research Projects “Local Special Services(21JC010);Shaanxi Provincial Department of Education “Shaanxi University Engineering Research Center for the Prevention and Treatment of Osteodegenerative Diseases with Integrated Traditional Chinese and Western Medicine”(陕教技办[2021]10号)
Corresponding Authors: Yuan Puwei,ORCID:0000-0001-7916-8823,E-mail:spine_surgeon@163.com。   

Cite this article:

Wu Jialun, Zhang Ruonan, Kang Wulin, Yuan Puwei. Deep Learning Model of Drug Recommendation Based on Patient Similarity Analysis. Data Analysis and Knowledge Discovery, 2023, 7(6): 148-160.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2022.0535     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2023/V7/I6/148

Task Definition of Drug Recommendation
符号 定义
x i t i个患者第 t次入院的医疗记录
d i t i个患者第 t次入院的诊断记录
p i t i个患者第 t次入院的手术记录
m i t i个患者第 t次入院的用药记录
X i i个患者的全部病史记录
X i 1 : t i个患者从第一次到第 t次入院的病史记录
d e i t , p e i t , m e i t 医疗记录(诊断、手术、用药)的嵌入向量
α i ( t ) i个患者第 t次入院的代码级(Code-Level)注意力
β i ( t ) i个患者第 t次入院的访问级(Visit-Level)注意力
q i t i个患者所有病史的整合表示
s i , j t , k 患者表示 q i t q j k之间的相似性
S n 相似病史序列集
m ^ i t i个患者的预测药物组合
m i t i个患者的真实药物组合
Notation
Detailed Architecture of MedSim Model
项目 数量
患者 6 350
临床事件 15 031
诊断 1 958
手术 1 430
药物(ATC 3) 132
药物(ATC 4) 266
访问的平均值/总数 2.37/29
访问诊断的平均值/总数 10.51/128
访问手术的平均值/总数 3.84/50
访问药物的平均值/总数(ATC 3) 11.18/64
访问药物的平均值/总数(ATC 4) 11.87/81
DDI种类数量 50
Statistics of the Dataset
代码 模型 DDI率 Jaccard相似性 F1值 PRAUC 药物平均数量
ATC3 LR 0.088 1±0.000 8 0.496 6±0.002 8 0.633 5±0.002 4 0.730 0±0.003 2 15.990 4±0.099 0
RETAIN 0.093 3±0.001 5 0.497 8±0.002 8 0.637 2±0.002 5 0.748 3±0.003 0 18.742 4±0.073 8
LEAP 0.094 5±0.000 4 0.480 4±0.002 6 0.621 8±0.002 6 0.746 3±0.003 0 18.742 4±0.073 8
DMNC 0.088 1±0.000 4 0.495 4±0.002 0 0.637 3±0.002 7 0.735 9±0.003 8 20.000 0±0.000 0
GAMENet 0.087 9±0.000 7 0.499 5±0.002 3 0.643 8±0.002 3 0.749 1±0.002 6 20.793 9±0.062 8
MedSim 0.076 1±0.000 9 0.511 8±0.002 3 0.657 9±0.002 3 0.756 3±0.003 0 17.456 0±0.068 6
ATC4 LR 0.089 5±0.000 7 0.382 6±0.002 4 0.531 3±0.002 3 0.627 1±0.001 7 14.332 5±0.112 8
RETAIN 0.099 2±0.001 7 0.392 0±0.003 7 0.553 5±0.004 1 0.622 7±0.004 7 16.631 9±0.163 2
LEAP 0.109 0±0.001 0 0.382 1±0.002 9 0.531 8±0.003 4 0.594 3±0.005 2 18.998 1±0.060 4
DMNC 0.103 6±0.000 4 0.394 3±0.002 1 0.543 4±0.002 3 0.619 4±0.003 0 20.000 0±0.000 0
GAMENet 0.079 4±0.000 8 0.391 7±0.003 6 0.552 5±0.003 8 0.618 3±0.004 1 19.349 1±0.104 1
MedSim 0.068 5±0.000 3 0.415 5±0.002 4 0.566 5±0.002 4 0.629 1±0.002 8 20.076 4±0.083 3
Performance Comparison
γ DDI率 Jaccard相似性 F1值 PRAUC 药物平均数量
0.00 0.010 8±0.000 3 0.409 7±0.002 1 0.560 2±0.002 3 0.612 0±0.002 9 19.059 9±0.057 9
0.01 0.022 5±0.000 4 0.409 9±0.002 6 0.561 1±0.002 6 0.610 9±0.002 5 19.140 3±0.079 7
0.02 0.024 3±0.000 3 0.411 0±0.002 2 0.561 7±0.002 2 0.617 9±0.002 5 19.114 6±0.093 1
0.03 0.037 0±0.000 2 0.413 1±0.002 2 0.564 2±0.002 3 0.622 1±0.002 5 19.352 0±0.113 7
0.04 0.040 7±0.000 3 0.413 6±0.001 8 0.565 0±0.001 8 0.627 9±0.002 2 19.827 2±0.105 8
0.05 0.054 4±0.000 2 0.414 5±0.001 9 0.566 1±0.001 9 0.628 0±0.002 8 20.165 8±0.090 5
0.06 0.068 5±0.000 3 0.415 5±0.002 4 0.566 5±0.002 4 0.629 1±0.002 8 20.076 4±0.083 3
0.07 0.074 4±0.000 4 0.418 0±0.002 2 0.568 7±0.002 1 0.633 3±0.002 3 20.555 7±0.098 2
0.08 0.081 5±0.000 4 0.419 3±0.002 8 0.590 3±0.002 8 0.636 4±0.002 6 20.890 8±0.120 7
Performance Under Acceptance DDI Rate γ
n DDI率 Jaccard相似性 F1值 PRAUC 药物平均数量
6 0.066 2±0.000 3 0.408 1±0.002 1 0.559 6±0.002 2 0.624 0±0.002 3 20.585 3±0.105 0
8 0.067 0±0.000 3 0.415 3±0.002 3 0.566 1±0.002 4 0.628 7±0.002 9 19.214 6±0.063 6
10 0.068 5±0.000 3 0.415 5±0.002 4 0.566 5±0.002 4 0.629 1±0.002 8 20.076 4±0.083 3
12 0.067 7±0.000 4 0.414 2±0.002 1 0.565 2±0.002 1 0.628 1±0.002 3 19.351 8±0.113 8
14 0.067 9±0.000 3 0.414 0±0.002 6 0.564 5±0.002 6 0.627 3±0.003 0 18.045 1±0.058 8
Performance Under Different Candidate Set
病例 模型 DDI率 药物组合推荐
病例1 处方 0.126 3 A01AD, A02BA, B05CX, C01CA, M01AB, N01AX, C07AB, N02BE, C03CA, N07AA, A02BC, C10AA, A06AD, A12BA, J01DB, C01DA, A01AB, A03FA, A02AA, N06A
LEAP 0.105 2 15 正确: A01AD, A02BA, B05CX, C01CA, M01AB, N01AX, C07AB, N02BE, C03CA, N07AA, A02BC, C10AA, A06AD, A12BA, J01DB
6 错误: A07AA, A02BX, N02AA, B01AB, C01BD(2), J01DH
GAMENet 0.090 8 17 正确: A01AD, A02BA, B05CX, C01CA, M01AB, N01AX, C07AB, N02BE, C03CA, N07AA, A02BC, C10AA, A06AD, A12BA, J01DB, C01DA, A03FA
6 错误: A07AA, A02BX, N02AA, B01AB, H03AA, J01DH
MedSim 0.087 1 19 正确: A01AD, A02BA, B05CX, C01CA, M01AB, N01AX, C07AB, N02BE, C03CA, N07AA, A02BC, C10AA, A06AD, A12BA, J01DB, A01AB, A03FA, A02AA, N06AX
1 错误: A02B
病例2 处方 0.097 7 A07AA, N01AX, N02BE, B05CX, N03AX, A06AD, A12BA, A01AB,
B03BB, N07BA, A04AA, C01EB, D04AA, J01DD, N05CF, A01A
LEAP 0.085 7 8 正确: A07AA, B05CX, N03AX, A06AD, A12BA, A01AB, B03BB, N07BA
7 错误: A01AD(1), A02BA, N02AA, B01AB, C02DB, A02BC, N03AB(2)
GAMENet 0.079 2 8 正确: A07AA, B05CX, N03AX, A06AD, A12BA, A01AB, B03BB, N07BA
7 错误: A01AD(1), A02BA, N02AA, B01AB, C02DB, R06AX(1), J01XX
MedSim 0.076 1 8 正确: A07AA, N02BE, B05CX, N03AX, A06AD, A12BA, B03BB, A04AA
6 错误: A02BA, N02AA, N06AX, B01AB, N05BA(1), A02BC
Cases Studies
[1] Lee C, Luo Z J, Ngiam K Y, et al. Big Healthcare Data Analytics: Challenges and Applications [A]//Handbook of Large-Scale Distributed Computing in Smart Healthcare[M]. Berlin: Springer, 2017: 11-41.
[2] Miotto R, Wang F, Wang S, et al. Deep Learning for Healthcare: Review, Opportunities and Challenges[J]. Briefings in Bioinformatics, 2018, 19(6): 1236-1246.
doi: 10.1093/bib/bbx044 pmid: 28481991
[3] Choi E, Bahadori M T, Schuetz A, et al. Doctor AI: Predicting Clinical Events via Recurrent Neural Networks[C]// Proceedings of the Machine Learning for Healthcare 2016. 2016: 301-318.
[4] Xiao C, Choi E, Sun J M. Opportunities and Challenges in Developing Deep Learning Models Using Electronic Health Records Data: A Systematic Review[J]. Journal of the American Medical Informatics Association, 2018, 25(10): 1419-1428.
doi: 10.1093/jamia/ocy068 pmid: 29893864
[5] 国务院办公厅. 国务院办公厅关于促进和规范健康医疗大数据应用发展的指导意见[J]. 中华人民共和国国务院公报, 2016(19):24-28.
[5] (General Office of the State Council of the People’s Republic of China. Guidance on Promoting and Regulating the Development of Health Care Big Data Applications[J]. ZHONGHUA RENMIN GONGHEGUO GUOWUYUAN GONGBAO, 2016(19):24-28.)
[6] Panagioti M, Stokes J, Esmail A, et al. Multimorbidity and Patient Safety Incidents in Primary Care: A Systematic Review and Meta-Analysis[J]. PLoS One, 2015, 10(8): e0135947.
doi: 10.1371/journal.pone.0135947
[7] Vinyals O, Bengio S, Kudlur M. Order Matters: Sequence to Sequence for Sets[OL]. arXiv Preprint, arXiv:1511.06391.
[8] Zhang Y T, Chen R, Tang J, et al. LEAP: Learning to Prescribe Effective and Safe Treatment Combinations for Multimorbidity[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017: 1315-1324.
[9] Gong F, Wang M, Wang H F, et al. SMR: Medical Knowledge Graph Embedding for Safe Medicine Recommendation[J]. Big Data Research, 2021, 23: 100174.
doi: 10.1016/j.bdr.2020.100174
[10] Zheng Z, Wang C, Xu T, et al. Drug Package Recommendation via Interaction-Aware Graph Induction[C]// Proceedings of the Web Conference. 2021:1284-1295.
[11] Le H, Tran T, Venkatesh S. Dual Memory Neural Computer for Asynchronous Two-View Sequential Learning[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2018: 1637-1645.
[12] Shang J Y, Ma T F, Xiao C, et al. Pre-training of Graph Augmented Transformers for Medication Recommendation[C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. 2019: 5953-5959.
[13] Choi E, Bahadori M T, Kulas J A, et al. RETAIN: An Interpretable Predictive Model for Healthcare Using Reverse Time Attention Mechanism[C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. 2016: 3512-3520.
[14] Shang J Y, Xiao C, Ma T F, et al. GAMENet: Graph Augmented Memory Networks for Recommending Medication Combination[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2019, 33: 1126-1133.
[15] Wang S S, Ren P J, Chen Z M, et al. Order-Free Medicine Combination Prediction with Graph Convolutional Reinforcement Learning[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. 2019: 1623-1632.
[16] Sun J M, Wang F, Hu J Y, et al. Supervised Patient Similarity Measure of Heterogeneous Patient Records[J]. ACM SIGKDD Explorations Newsletter, 2012, 14(1): 16-24.
doi: 10.1145/2408736.2408740
[17] Suo Q L, Ma F L, Yuan Y, et al. Personalized Disease Prediction Using a CNN-Based Similarity Learning Method[C]// Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine. 2017: 811-816.
[18] Zhang P, Wang F, Hu J Y, et al. Towards Personalized Medicine: Leveraging Patient Similarity and Drug Similarity Analytics[J]. AMIA Joint Summits on Translational Science. 2014: 132-136.
[19] Müller M. Dynamic Time Warping[A]//Information Retrieval for Music and Motion[M]. Berlin: Springer, 2007: 69-84.
[20] Yin C C, Liu R Q, Zhang D D, et al. Identifying Sepsis Subphenotypes via Time-Aware Multi-modal Auto-encoder[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020: 862-872.
[21] Chung J, Gulcehre C, Cho K, et al. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[OL]. arXiv Preprint, arXiv:1412.3555.
[22] He Y, Wang C, Li N, et al. Attention and Memory-Augmented Networks for Dual-View Sequential Learning[C]// Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020: 125-134.
[23] He K M, Zhang X Y, Ren S Q, et al. Deep Residual Learning for Image Recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. 2016: 770-778.
[24] Ji S W, Ye J P. Linear Dimensionality Reduction for Multi-label Classification[C]// Proceedings of the 21st International Joint Conference on Artificial Intelligence. 2009: 1077-1082.
[25] An W P, Wang H Q, Sun Q Y, et al. A PID Controller Approach for Stochastic Optimization of Deep Networks[C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2018: 8522-8531.
[26] Johnson A E W, Pollard T J, Shen L, et al. MIMIC-III, a Freely Accessible Critical Care Database[J]. Scientific Data, 2016, 3: 160035.
doi: 10.1038/sdata.2016.35
[27] Wishart D S, Feunang Y D, Guo A C, et al. DrugBank 5.0: A Major Update to the DrugBank Database for 2018[J]. Nucleic Acids Research, 2018, 46(D1): D1074-D1082.
doi: 10.1093/nar/gkx1037
[28] Niwattanakul S, Singthongchai J, Naenudorn E, et al. Using of Jaccard Coefficient for Keywords Similarity[C]// Proceedings of the 2013 IAENG International Conference on Internet Computing and Web Services. 2013.
[29] Davis J, Goadrich M. The Relationship Between Precision-Recall and ROC Curves[C]// Proceedings of the 23rd International Conference on Machine Learning. 2006: 233-240.
[1] Wang Xiaofeng, Sun Yujie, Wang Huazhen, Zhang Hengzhang. Construction and Verification of Type-Controllable Question Generation Model Based on Deep Learning and Knowledge Graphs[J]. 数据分析与知识发现, 2023, 7(6): 26-37.
[2] Wang Nan, Wang Qi. Evaluating Student Engagement with Deep Learning[J]. 数据分析与知识发现, 2023, 7(6): 123-133.
[3] Liu Yang, Zhang Wen, Hu Yi, Mao Jin, Huang Fei. Hotel Stock Prediction Based on Multimodal Deep Learning[J]. 数据分析与知识发现, 2023, 7(5): 21-32.
[4] Huang Xuejian, Ma Tinghuai, Wang Gensheng. Detecting Weibo Rumors Based on Hierarchical Semantic Feature Learning Model[J]. 数据分析与知识发现, 2023, 7(5): 81-91.
[5] Wang Yinqiu, Yu Wei, Chen Junpeng. Automatic Question-Answering in Chinese Medical Q & A Community with Knowledge Graph[J]. 数据分析与知识发现, 2023, 7(3): 97-109.
[6] Zhang Zhengang, Yu Chuanming. Knowledge Graph Completion Model Based on Entity and Relation Fusion[J]. 数据分析与知识发现, 2023, 7(2): 15-25.
[7] Shen Lining, Yang Jiayi, Pei Jiaxuan, Cao Guang, Chen Gongzheng. A Fine-Grained Sentiment Recognition Method Based on OCC Model and Triggering Events[J]. 数据分析与知识发现, 2023, 7(2): 72-85.
[8] Wang Weijun, Ning Zhiyuan, Du Yi, Zhou Yuanchun. Identifying Interdisciplinary Sci-Tech Literature Based on Multi-Label Classification[J]. 数据分析与知识发现, 2023, 7(1): 102-112.
[9] Xiao Yuhan, Lin Huiping. Mining Differentiated Demands with Aspect Word Extraction: Case Study of Smartphone Reviews[J]. 数据分析与知识发现, 2023, 7(1): 63-75.
[10] Cheng Quan, She Dexin. Drug Recommendation Based on Graph Neural Network with Patient Signs and Medication Data[J]. 数据分析与知识发现, 2022, 6(9): 113-124.
[11] Wang Lu, Le Xiaoqiu. Research Progress on Citation Analysis of Scientific Papers[J]. 数据分析与知识发现, 2022, 6(4): 1-15.
[12] Zheng Xiao, Li Shuqing, Zhang Zhiwang. Measuring User Item Quality with Rating Analysis for Deep Recommendation Model[J]. 数据分析与知识发现, 2022, 6(4): 39-48.
[13] Yu Chuanming, Lin Hongjun, Zhang Zhengang. Joint Extraction Model for Entities and Events with Multi-task Deep Learning[J]. 数据分析与知识发现, 2022, 6(2/3): 117-128.
[14] Zhang Yunqiu, Li Bocheng, Chen Yan. Automatic Classification with Unbalanced Data for Electronic Medical Records[J]. 数据分析与知识发现, 2022, 6(2/3): 233-241.
[15] Zhang Fangcong, Qin Qiuli, Jiang Yong, Zhuang Runtao. Named Entity Recognition for Chinese EMR with RoBERTa-WWM-BiLSTM-CRF[J]. 数据分析与知识发现, 2022, 6(2/3): 251-262.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn