Please wait a minute...
Data Analysis and Knowledge Discovery  2023, Vol. 7 Issue (5): 10-20    DOI: 10.11925/infotech.2096-3467.2022.0627
Current Issue | Archive | Adv Search |
Analyzing Evolution of Basic Research Funding Orientation: Case Study of NSF
Wei Huanan,Lei Ming,Wang Xuefeng(),Yu Yin
School of Management and Economics, Beijing Institute of Technology, Beijing 100081, China
Download: PDF (1294 KB)   HTML ( 20
Export: BibTeX | EndNote (RIS)      
Abstract  

[Objective] This paper identifies and analyzes the funding orientation of basic research projects funded in the United States, aiming to provide suggestions for improving the funding layout of science funds in China. [Methods] Based on the literature review, we established a feature system for identifying funding orientation from four dimensions: basic information, collaborative characteristics, project characteristics, and output characteristics. Then, we constructed a recognition model with the help of machine learning. Finally, we conducted the corresponding evolution analysis. [Results] The SVM model with an RBF kernel had a better identification effect. The case analysis of synthetic biology showed that the NSF balanced “free exploration” and “demand-oriented”. The basic research of “free exploration” was consistent throughout. In contrast, the basic research of “demand-oriented” was relatively scarce in the early stages, gradually increasing with the development of the field. Changes in the two funding orientations are closely related to the development stage of the discipline and the national strategic policies. [Limitations] We only chose one field for case analysis, which lacked representativeness. We only included NSF project data and did not include NIH, FDA, and other data, so the comprehensiveness of the data source needs to be strengthened. [Conclusions] This study is a valuable exploration of identifying basic research funding orientation. By identifying and analyzing the funding orientation of NSF projects in synthetic biology, this study can provide suggestions for the funding layout of NSFC in China and promote the coordinated development of basic research in China.

Key wordsBasic Research      Funding-Oriented Identification      Machine Learning      Synthetic Biology      NSF     
Received: 17 June 2022      Published: 04 July 2023
ZTFLH:  TP393  
  G250  
Corresponding Authors: Wang Xuefeng,ORCID:0000-0002-4857-6944,E-mail:wxf5122@bit.edu.cn。   

Cite this article:

Wei Huanan, Lei Ming, Wang Xuefeng, Yu Yin. Analyzing Evolution of Basic Research Funding Orientation: Case Study of NSF. Data Analysis and Knowledge Discovery, 2023, 7(5): 10-20.

URL:

https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/10.11925/infotech.2096-3467.2022.0627     OR     https://manu44.magtech.com.cn/Jwk_infotech_wk3/EN/Y2023/V7/I5/10

The Tree Diagram of Characterization Study
Analysis of Cooperative Characteristics
The Process of Model Building
术语 示例
社会问题 全球甲烷排放量过高导致气候的变化,对该问题进行解决或缓解等
重大事件 应对新型冠状病毒危机研究检测和治疗方法、发生原油泄露事件后研究应对策略等
大型仪器 开发医学检测仪器等
基础平台 建立药物输送平台、建立基因元件库、开发微分平台等
重大设备 开发新的图像分析和纳米级机械设备等
治疗疾病 开发治疗特定癌症的药物或技术等
商业化应用 降低药物成本、优化药物生产流程、提高环境友好型包装材料产量等
公众传播 让高中生和教师了解并扩大对合成生物学在个人、健康和食品生产环境中、在生物工程中的作用的理解和看法,提高他们的兴趣,从而参与合成生物学活动等
研究培训 在2012-2014年夏季为8名学生提供为期10周的研究培训
Terminology and Related Examples
序号 特征信息 字段名称 字段类型 备注
1 基本信息 项目持续时间 有序数据 以月份为单位
2 基本信息 项目资助金额 有序数据 将金额分为10个等级
3 合作特征 Co-PI数量 有序数据 0, 1, 2, …
4 合作特征 是否为合作项目 分类数据 0/1
5 项目特征 项目所属学部 分类数据 BIO、CISE、HER、ENG、GEO、MPS、OD、SBE
6 项目特征 计划数量 有序数据 1, 2, 3, …
7 项目特征 主要计划 分类数据 资助计划中的第一个计划
8 项目特征 计划信息 高维稀疏向量 272维
9 项目特征 依托单位类型 分类数据 高校、科研院所、医院、企业、会议、学会、国家科学院、其它
10 项目特征 项目资助类型 分类数据 Standard Grant、Continuing Grant、Cooperative Agreement、Fellowship
11 产出特征 项目产出论文数量 有序数据 需要和已执行年度联合起来看
12 产出特征 项目已执行年份 有序数据 1, 2, 3, …
Input Field Information
序号 字段 重要
性值
序号 字段 重要
性值
1 主要计划(No.1) 1.000 9 是否合作研究 0.965
2 资助金额 1.000 10 产出论文数量 0.930
3 持续时间(月) 1.000 11 $F-因子-2 0.891
4 NSF学部 1.000 12 $F-因子-3 0.745
5 已执行年度 1.000 13 计划数量 0.663
6 机构类型 1.000 14 $F-因子-1 0.596
7 资助类型 1.000 15 $F-因子-4 0.578
8 Co-PI数量 0.991 16 $F-因子-5 0.375
Characteristic Fields of Model Input
字段范围 训练集准确率/% 测试集准确率/%
重要程度大于0.5 82.49 81.19
重要程度大于0.6 82.81 83.06
重要程度大于0.7 82.53 82.86
重要程度大于0.8 82.37 81.96
重要程度大于0.9 81.37 81.33
Model Accuracy under Different Field
模型 算法 训练集 测试集 验证集
正确率/
%
AUC 正确率/
%
AUC 正确率/
%
AUC
SVM 线性 82.81 0.894 83.06 0.882 80.78 0.885
RBF 83.92 0.909 85.13 0.913 80.37 0.887
多项式 83.90 0.851 84.05 0.874 83.33 0.835
C5.0 Boosting 82.34 0.876 83.82 0.884 86.22 0.894
Comparison of Four Model Algorithms
资助导向 项目数量
自由探索 649
需求导向 977
Funding-Oriented Distribution
Annual Trends of Basic Research Projects of Two Funding-Oriented
Evolution of Basic Research Projects of Two Funding-Oriented
Distribution of Basic Research Projects of Two Funding-Oriented
[1] 叶玉江. 基础研究的新形势和新部署[J]. 中国基础科学, 2017, 19(4): 12-13.
[1] (Ye Yujiang. New Forms and Plans of Basic Research[J]. China Basic Science, 2017, 19(4): 12-13.)
[2] 王红, 马名杰. 基础研究领域中需求导向研究的组织与政策[J]. 中国基础科学, 2016, 18(5): 58-62.
[2] (Wang Hong, Ma Mingjie. Organization and Policies of Demand-Oriented Research in Basic Research Field[J]. China Basic Science, 2016, 18(5): 58-62.)
[3] 央广网. 习近平:在科学家座谈会上的讲话[EB/OL]. [2020-09-11]. https://baijiahao.baidu.com/s?id=1677549017222113840&wfr=spider&for=pc.
[3] (CNR News. Xi Jinping: Speech at a Symposium of Scientists[EB/OL]. [2020-09-11]. https://baijiahao.baidu.com/s?id=1677549017222113840&wfr=spider&for=pc.)
[4] 李静海. 构建新时代科学基金体系夯实世界科技强国根基[J]. 中国科学基金, 2018, 32(4): 345-350.
[4] (Li Jinghai. Building a Science Funding System for a New Paradigm Shift in Science[J]. Bulletin of National Natural Science Foundation of China, 2018, 32(4): 345-350.)
[5] 张慧琴, 平婧, 孙昌璞. 分类支持基础研究促进全链条颠覆性技术创新[J]. 中国工程科学, 2018, 20(6): 24-26.
[5] (Zhang Huiqin, Ping Jing, Sun Changpu. Supporting Basic Research by Classification to Promote Whole-Chain Disruptive Technology Innovation[J]. Strategic Study of CAE, 2018, 20(6): 24-26.)
[6] 周珊珊. 以好奇心助力基础研究[N]. 人民日报, 2020-12-03.
[6] (Zhou Shanshan. Help Basic Research with Curiosity[N]. People’s Daily, 2020-12-03.)
[7] Mayntz R. Socialist Academies of Sciences: The Enforced Orientation of Basic Research at User Needs[J]. Research Policy, 1998, 27(8): 781-791.
doi: 10.1016/S0048-7333(98)00090-0
[8] Committee on Science, U.S. House of Representatives. Excerpts from Unlocking Our Future: Toward a New National Science Policy[J]. Science Communication, 1999, 20(3): 328-336.
doi: 10.1177/1075547099020003003
[9] 王欣爽, 白莽. 从基础研究的分类谈我国基础研究的战略问题[J]. 哈尔滨工业大学学报(社会科学版), 1999, 1(1): 37-39.
[9] (Wang Xinshuang, Bai Mang. A Discussion about Strategic Problems in Basic Research in China in Terms of Classification[J]. Journal of Harbin Institute of Technology (Social Sciences Edition), 1999, 1(1): 37-39.)
[10] 徐梦真. 巴斯德式专利的形成过程与影响因素研究[D]. 大连: 大连理工大学, 2015.
[10] (Xu Mengzhen. Research on Formation Process and Influence Factors of Pasteur-Type Patent[D]. Dalian: Dalian University of Technology, 2015.)
[11] 李正风. 论基础研究功能的变化[J]. 清华大学学报(哲学社会科学版), 2001, 16(4): 62-66.
[11] (Li Zhengfeng. A Preliminary Exploration on the Changes of the Basic Research Function[J]. Journal of Tsinghua University(Philosophy and Social Sciences), 2001, 16(4): 62-66.)
[12] 樊春良, 朱蔚彤. 关于国家科学基金的公共和社会服务职能的探讨[J]. 科学学与科学技术管理, 2008, 29(2): 5-8, 46.
[12] (Fan Chunliang, Zhu Weitong. Research on the Public and Social Service Function of National Science Foundation[J]. Science of Science and Management of S. & T., 2008, 29(2): 5-8, 46.)
[13] 周光召. 基础研究与国家目标——国家重点基础研究发展计划[J]. 中国基础科学, 2005, 7(2): 3-7.
[13] (Zhou Guangzhao. Basic Research and National Objectives—National Basic Research Program of China[J]. China Basic Science, 2005, 7(2): 3-7.)
[14] 程如烟. 基础研究国外政策动向浅析[J]. 全球科技经济瞭望, 2020, 35(11): 1-5, 58.
[14] (Cheng Ruyan. An Analysis of Basic Research Policy Trends of Foreign Countries[J]. Global Science,Technology and Economy Outlook, 2020, 35(11): 1-5, 58.)
[15] 樊春良. 科学中的计划和自由[J]. 科学学研究, 2002, 20(1): 5-10.
[15] (Fan Chunliang. Freedom and Planning in Science[J]. Studies in Science of Science, 2002, 20(1): 5-10.)
[16] 范旭, 林燕, 黄业展. 广东与江苏基础研究能力比较研究——2000-2014年统计数据分析[J]. 科技进步与对策, 2017, 34(24): 42-48.
[16] (Fan Xu, Lin Yan, Huang Yezhan. A Comparative Study on the Basic Research Ability Between Guangdong and Jiangsu—Based on Statistical Data from 2000 to 2014[J]. Science & Technology Progress and Policy, 2017, 34(24): 42-48.)
[17] 雷小苗, 李正风. 市场导向型基础研究——反向路径下的技术创新逻辑[J]. 科技管理研究, 2020, 40(21): 1-6.
[17] (Lei Xiaomiao, Li Zhengfeng. Market-Oriented Basic Research: Logic of Technological Innovation in the Reverse Path[J]. Science and Technology Management Research, 2020, 40(21): 1-6.)
[18] 董金阳, 刘铁忠, 董平, 等. 我国基础研究管理及科研合作模式的多层次对比研究[J]. 科技进步与对策, 2021, 38(8): 1-8.
[18] (Dong Jinyang, Liu Tiezhong, Dong Ping, et al. The Management and Collaboration Mode of China’s Basic Research: A Multi-Scale Comparison Between Projects[J]. Science & Technology Progress and Policy, 2021, 38(8): 1-8.)
[19] Berbegal-Mirabent J, Sabate F. Balancing Basic and Applied Research Outputs: A Study of the Trade-Offs Between Publishing and Patenting[J]. Technology Analysis & Strategic Management, 2015, 27(10): 1143-1158.
[20] 范旭, 李瑞娇. 美国基础研究的特点分析及其对中国的启示[J]. 世界科技研究与发展, 2019, 41(6): 634-648.
[20] (Fan Xu, Li Ruijiao. The Characteristics of Basic Research in the United States and Its Enlightenment to China[J]. World Sci-Tech R & D, 2019, 41(6): 634-648.)
[21] 朱军文. 基于SCIE论文的我国研究型大学基础研究产出表现研究: 1978-2007[D]. 上海: 上海交通大学, 2009.
[21] (Zhu Junwen. Research Performance of Chinese Research Universities from 1978 to 2007: A Study Based on SCIE[D]. Shanghai: Shanghai Jiao Tong University, 2009.)
[22] 赵萌. 基于增量学习的图书文本分类方法[J]. 情报探索, 2021 (7): 52-56.
[22] (Zhao Meng. Book Text Classification Method Based on Incremental Learning[J]. Information Research, 2021(7): 52-56.)
[23] 王杨, 许闪闪, 李昌, 等. 基于支持向量机的中文极短文本分类模型[J]. 计算机应用研究, 2020, 37(2): 347-350.
[23] (Wang Yang, Xu Shanshan, Li Chang, et al. Classification Model Based on Support Vector Machine for Chinese Extremely Short Text[J]. Application Research of Computers, 2020, 37(2): 347-350.)
[24] 宋伟雪. 基于机器学习的建筑业二氧化碳排放预测模型研究[D]. 西安: 西安建筑科技大学, 2020.
[24] (Song Weixue. Research on Carbon Emission Prediction Model of Construction Industry Based on Machine Learning[D]. Xi’an: Xi’an University of Architecture and Technology, 2020.)
[25] 范馨文. 人工神经网络模式识别的机理与意义[D]. 哈尔滨: 黑龙江大学, 2019.
[25] (Fan Xinwen. Mechanism and Significance of Artificial Neural Network Pattern Recognition[D]. Harbin: Heilongjiang University, 2019.)
[26] Burges C J C. A Tutorial on Support Vector Machines for Pattern Recognition[J]. Data Mining and Knowledge Discovery, 1998, 2(2): 121-167.
doi: 10.1023/A:1009715923555
[27] 蔡孟翔. 基于SVM的改进加权KNN算法对不均衡数据的分类与应用[D]. 合肥: 安徽大学, 2020.
[27] (Cai Mengxiang. Classification and Application of Improved Weighted KNN Algorithm Based on SVM to Unbalanced Data[D]. Hefei: Anhui University, 2020.)
[28] Quinlan J R. C4.5: Programs for Machine Learning[M]. San Mateo: Morgan Kaufmann Publishers, 1993.
[29] Breiman L I, Friedman J H, Olshen R A, et al. Classification and Regression Trees[M]. Belmont: Wadsworth International Group, 1984.
[30] Shafer J C, Agrawal R, Mehta M. SPRINT: A Scalable Parallel Classifier for Data Mining[C]// Proceedings of the 22nd International Conference on Very Large Data Bases. 1996: 544-555.
[31] Mehta M, Agrawal R, Rissanen J. SLIQ: A Fast Scalable Classifier for Data Mining[C]// Proceedings of International Conference on Extending Database Technology. 1996: 18-32.
[32] Han J W, Kamber M, Pei J. 数据挖掘:概念与技术[M]. 范明,孟小峰译. 3版. 北京: 机械工业出版社, 2012.
[32] (Han J W, Kamber M, Pei J. Data Mining: Concepts and Techniques[M]. Translated by Fan Ming, Meng Xiaofeng. The 3rd Edition. Beijing: China Machine Press, 2012.)
[33] Thombre A. Comparing Logistic Regression, Neural Networks, C5.0 and M5’ Classification Techniques[C]// Proceedings of International Workshop on Machine Learning and Data Mining in Pattern Recognition. 2012: 132-140.
[34] 张雪, 张志强, 陈秀娟, 等. 合成生物学领域的基础研究与技术创新关联分析[J]. 情报学报, 2020, 39(3): 231-242.
[34] (Zhang Xue, Zhang Zhiqiang, Chen Xiujuan, et al. Correlation Analysis of Basic Research and Technological Innovation in Synthetic Biology[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(3): 231-242.)
[35] Shapira P, Kwon S, Youtie J. Tracking the Emergence of Synthetic Biology[J]. Scientometrics, 2017, 112(3): 1439-1469.
doi: 10.1007/s11192-017-2452-5 pmid: 28804177
[36] Martin B, Pavitt K, Senker J, et al. The Relationship Between Publicly Funded Basic Research and Economic Performance[R]. Sussex: University of Sussex, 1996.
[37] 薛薇. 基于SPSS Modeler的数据挖掘[M]. 第2版. 北京: 中国人民大学出版社, 2014.
[37] (Xue Wei. Data Mining Based on SPSS Modeler[M]. The 2nd Edition. Beijing: China Renmin University Press, 2014.)
[38] Sando K, Hino H. Modal Principal Component Analysis[J]. Neural Computation, 2020, 32(10): 1901-1935.
doi: 10.1162/neco_a_01308 pmid: 32795231
[39] 吴应良, 吴昊苏, 吴月瑞, 等. 基于主成分分析法的知识管理绩效评价研究[J]. 情报杂志, 2007, 26(6): 27-29.
[39] (Wu Yingliang, Wu Haosu, Wu Yuerui, et al. Research on the Performance Measurement of Knowledge Management Based on Principal Component Analysis[J]. Journal of Information, 2007, 26(6): 27-29.)
[1] Jiang Linfu, Yuan Zhenming, Zhang Xingwei, Jiang Huaqiang, Sun Xiaoyan. Ten-Year Prediction of Coronary Heart Disease Based on PCHD-TabNet[J]. 数据分析与知识发现, 2023, 7(5): 133-144.
[2] Lin Weizhen, Liu Hongwei, Chen Yanjun, Wen Zhanming, Yi Minqi. Customer Satisfaction Modelling for Healthcare Wearable Devices Through Online Reviews[J]. 数据分析与知识发现, 2023, 7(5): 145-154.
[3] Lv Qi, Shangguan Yanhong, Zhang Lin, Huang Ying. Interdisciplinary Measurement Based on Automatic Classification of Text Content[J]. 数据分析与知识发现, 2023, 7(4): 56-67.
[4] Han Pu, Zhong Yule, Lu Haojie, Ma Shiwen. Identifying Named Entities of Adverse Drug Reaction with Adversarial Transfer Learning[J]. 数据分析与知识发现, 2023, 7(3): 131-141.
[5] Qu Zongxi, Sha Yongzhong, Li Yutong. Predicting Major Infectious Diseases Based on Grey Wolf Optimization and Multi-machine Learning: Case Study of COVID-19[J]. 数据分析与知识发现, 2022, 6(8): 122-133.
[6] Zhao Yang, Yan Zhouzhou, Shen Qiqi, Li Zhonghang. Evaluating Privacy Policy for Mobile Health APPs with Machine Learning[J]. 数据分析与知识发现, 2022, 6(5): 112-126.
[7] Wang Lu, Le Xiaoqiu. Research Progress on Citation Analysis of Scientific Papers[J]. 数据分析与知识发现, 2022, 6(4): 1-15.
[8] Guo Fanrong, Huang Xiaoxi, Wang Rongbo, Chen Zhiqun, Hu Chuang, Xie Yimin, Si Boyu. Identifying Metaphor with Transformer and Graph Convolutional Network[J]. 数据分析与知识发现, 2022, 6(4): 120-129.
[9] Zhou Zeyu, Wang Hao, Zhang Xiaoqin, Tao Fao, Ren Qiutong. Classification Model for Chinese Traditional Embroidery Based on Xception-TD[J]. 数据分析与知识发现, 2022, 6(2/3): 338-347.
[10] Wang Ruojia, Yan Chengxi, Guo Fengying, Wang Jimin. Predicting Churners of Online Health Communities Based on the User Persona[J]. 数据分析与知识发现, 2022, 6(2/3): 80-92.
[11] Zhang Wei, Wang Hao, Chen Yuetong, Fan Tao, Deng Sanhong. Identifying Metaphors and Association of Chinese Idioms with Transfer Learning and Text Augmentation[J]. 数据分析与知识发现, 2022, 6(2/3): 167-183.
[12] Wu Jinhong, Mu Keliang. Automatic Identifying Abnormal Behaviors of International Journals[J]. 数据分析与知识发现, 2022, 6(2/3): 385-395.
[13] Hu Yamin, Wu Xiaoyan, Chen Fang. Review of Technology Term Recognition Studies Based on Machine Learning[J]. 数据分析与知识发现, 2022, 6(2/3): 7-17.
[14] Yi Xinhe, Yang Peng, Wen Yimin. Cross-domain Transfer Learning for Recognizing Professional Skills from Chinese Job Postings[J]. 数据分析与知识发现, 2022, 6(2/3): 274-288.
[15] Wang Lu, Le Xiaoqiu. Identifying Topic-Problem Instances Based on Syntactic Dependency Enhancement[J]. 数据分析与知识发现, 2022, 6(12): 13-22.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938   E-mail:jishu@mail.las.ac.cn