Please wait a minute...
Advanced Search
现代图书情报技术  2005, Vol. 21 Issue (3): 37-42     https://doi.org/10.11925/infotech.1003-3513.2005.03.09
  信息检索技术 本期目录 | 过刊浏览 | 高级检索 |
智能检索模型研究
孔敬1,2
1(中国科学院文献情报中心 北京 100080)
2(中国科学院研究生院 北京 100039)
Study on Intelligent Retrieval System Model
Kong Jing1,2
1 (Library of Chinese Academy of Sciences, Beijing 100080, China)
2 (Graduate School of the Chinese Academy of Sciences, Beijing 100039, China)
全文: PDF (0 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

提出了一个智能检索形式框架模型,论述了实例化该模型的建模技术、知识表示和检索算法,对30个智能信息检索系统进行了模型框架、知识表示和检索算法的统计分析,总结了三种类型的智能检索模型实例化方案。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
关键词 智能检索模型建模技术知识表示检索算法    
Abstract

This paper proposes a formal framework model for the intelligent information retrieval. It outlines the typical modeling method, knowledge representation and retrieval algorithm for instantiation of the given formal framework. It provides the statistic analysis of the modeling framework, knowledge representation and retrieval algorithm for 30 intelligent retrieval systems. It summarizes three kinds of solutions for instantiation of the formal intelligent retrieval model.

Key wordsIntelligent retrieval    Modeling method    Knowledge representation    Retrieval algorithm
收稿日期: 2004-10-28      出版日期: 2005-03-25
ZTFLH: 

G354

 
通讯作者: 孔敬     E-mail: kongj@mail.las.ac.cn
作者简介: 孔敬
引用本文:   
孔敬. 智能检索模型研究[J]. 现代图书情报技术, 2005, 21(3): 37-42.
Kong Jing. Study on Intelligent Retrieval System Model. New Technology of Library and Information Service, 2005, 21(3): 37-42.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2005.03.09      或      http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2005/V21/I3/37

1高济,朱淼良,何钦铭. 人工智能基础. 北京:高等教育出版社,2002:8
2Croft W B. Approaches to intelligent information retrieval.Information Processing & Management, 1987,23(4): 249-254
3Brajnik G, Guida G, Tasso C. User modeling in intelligent information retrieval. Information Processing & Management, 1987, 23(4) : 305-320
4Bruandet M. Outline of a knowledge-base model for an intelligent information retrieval system. Information Processing & Management, 1989, 25(1): 89-115
5Cortez E M, Park S C, Kim S. The hybrid application of an inductive learning method and a neural network for intelligent information retrieval.Information Processing & Management, 1995, 31(6): 789-813
6Mejasson P, et al. Intelligent design assistant (IDA): a case base reasoning system for material and design. Materials & Design, 2001, 22(3): 163-170
7Setchi R, Tang Q, Cheng L. Information Retrieval Using Deep Natural Language Processing. In: Palade V, Howlett R.J, Jain L C, ed. KES 2003, LNAI 2773. Berlin Heidelberg: Springer-Verlag, 2003, 879-885
8Lee C, Chen Y. An embedded visual programming interface for intelligent information retrieval on the Web.In: Knowledge and Data Engineering Exchange Workshop, 1997. Proceedings. 1997 : 46-53
9Machiraju C, Kanda S, Dasigi V. Application of Intelligent Information Retrieval Techniques to a Television Similar Program Guide. In: Orchard R et al. ed. IEA/AIE 2004, LNAI 3029. Berlin Heidelberg: Springer-Verlag, 2004: 788-796
10ali J, et al. ICBR-Multimedia Management System for Intelligent Content Based Retrieval. In: Enser P et al. ed. CIVR 2004, LNCS 3115. Berlin Heidelberg: Springer-Verlag 2004: 601-609
11Gasteratos A, Zafeiridis P, Andreadis I. An Intelligent System for Aerial Image Retrieval and Classification. In: Vouros G A, Panayiotopoulos T, ed. SETN 2004, LNAI 3025. Berlin Heidelberg: Springer-Verlag, 2004: 63-71
12Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval. New York: ACM Press, 1999:23
13Griffith J, O'Riordan C. A Formal Framework for Combining Evidence in an Information Retrieval Domain. In: Palade V, Howlett R J, Jain L C, ed. KES 2003, LNAI 2773/2003. Berlin: Springer-Verlag. 2003: 864-871
14van Rijsbergen C J. A non-classical logic for information retrieval. The Computer Journal, 1986, 29(6): 481-485
15Sparck Jones K. Intelligent retrieval. In: Jones, K P, ed. Intelligent Information Retrieval: Proceedings of Informatics 7. London: ASLIB, 1983:136-142
16Brasethvik T, Gulla J A. Natural Language Analysis for Semantic Document Modeling. M. In : Bouzeghoub Z, Kedad E, Métais Eds. NLDB 2000, LNCS 1959/2001. Berlin, Heidelberg: Springer-Verlag, 2001 : 127-139
17He Y, Hui S. Mining a Web Citation Database for author co-citation analysis. Information Processing and Management, 2002, 38 : 491-508
18Zhu T, Greiner R, Haubl G. Learning a Model of aWeb User's Interests. In: Brusilovsky P, et al. Eds. UM 2003, LNAI 2702. Berlin, Heidelberg: Springer-Verlag, 2003: 65-75
19徐振宁,张维明,陈文伟. 基于Ontology的智能信息检索. 计算机科学, 2001, 28(6): 21-26, 44
20Tawil A-R, Behrendt W. Requirements for components of an intelligent information retrieval model for the WWW. In: Intelligent World Wide Web Agents (Digest No: 1997/118), IEE Colloquium on, 17 March 1997:1-7
21Turtle H R. Inference Networks for Document Retrieval. UMI, 1991
22Tu H, Hsiang J. An architecture and category knowledge for intelligent information retrieval agents. Decision Support Systems, 2000, 28(3): 255-268
23Montani S, Bellazzi R. Integrating case based and rule based reasoning in a decision support system: evaluation with simulated patients. In: Proceedings of the 1999 AMIA Annual Symposium. Philadelphia: Hanley and Belfus, Inc. 1999 : 887-891

[1] 余传明, 王曼怡, 林虹君, 朱星宇, 黄婷婷, 安璐. 基于深度学习的词汇表示模型对比研究*[J]. 数据分析与知识发现, 2020, 4(8): 28-40.
[2] 余传明,原赛,朱星宇,林虹君,张普亮,安璐. 基于深度学习的热点事件主题表示研究*[J]. 数据分析与知识发现, 2020, 4(4): 1-14.
[3] 余传明,李浩男,王曼怡,黄婷婷,安璐. 基于深度学习的知识表示研究:网络视角*[J]. 数据分析与知识发现, 2020, 4(1): 63-75.
[4] 马绪凯, 丁晟春. 复杂产品设计知识智能检索研究[J]. 现代图书情报技术, 2014, 30(9): 44-50.
[5] 胡正银, 方曙. 专利文本技术挖掘研究进展综述[J]. 现代图书情报技术, 2014, 30(6): 62-70.
[6] 陈颖, 李姣, 李军莲. 中国药品数据的知识表示方法研究[J]. 现代图书情报技术, 2013, (6): 9-15.
[7] 董慧 徐雷. 本体知识表示的历史领域专家系统模型*[J]. 现代图书情报技术, 2010, 26(7/8): 72-78.
[8] 赵琦,张智雄,孙坦. 文本可视化及其主要技术方法研究*[J]. 现代图书情报技术, 2008, 24(8): 24-30.
[9] 于娟,王贱珍,马金平,李永 . 基于学科体系的OWL知识表示[J]. 现代图书情报技术, 2006, 1(5): 18-21.
[10] 于娟,王贱珍,马金平,李永. 基于课程体系的OWL知识表示方法研究[J]. 现代图书情报技术, 2006, 1(3): 51-54.
[11] 李智慧,陈东. 检索运算算法的优化[J]. 现代图书情报技术, 1995, 11(5): 10-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn