Please wait a minute...
Advanced Search
现代图书情报技术  2009, Vol. Issue (9): 28-33     https://doi.org/10.11925/infotech.1003-3513.2009.09.05
  知识组织与知识管理 本期目录 | 过刊浏览 | 高级检索 |
科学研究前沿探测方法综述
陈仕吉
(中国农业大学图书馆 北京 100193)
(中国科学院国家科学图书馆 北京 100190)
(中国科学院研究生院 北京 100049)
Survey of Approaches to Research Front Detection
Chen Shiji
(Library of China Agricultural University, Beijing 100193, China)
(National Science Library, Chinese Academy of Sciences, Beijing 100190, China)
(Graduate University of Chinese Academy of Science, Beijing 100049, China)
全文: PDF (584 KB)  
输出: BibTeX | EndNote (RIS)      
摘要 

阐述科学研究前沿的含义和特征,从引文分析和主题词两个角度探讨科学研究前沿的探测方法与技术,并分析各种方法的优缺点和应用环境。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈仕吉
关键词  研究前沿引文分析社团结构探测共词分析    
Abstract

 This paper analyzes the meaning and feature of research front, then it introduces some approaches based on citation analysis and theme words irrespectively. In the end, it concludes the advantages, disadvantages and application environment of  these approaches.

Key words Research front    Citation analysis    Community structure detection    Co-word analysis
收稿日期: 2009-08-07      出版日期: 2009-09-25
ZTFLH: 

G350

 
通讯作者: 陈仕吉     E-mail: chensj@mail.las.ac.cn
作者简介: 陈仕吉
引用本文:   
陈仕吉. 科学研究前沿探测方法综述[J]. 现代图书情报技术, 2009, (9): 28-33.
Chen Shiji. Survey of Approaches to Research Front Detection. New Technology of Library and Information Service, 2009, (9): 28-33.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2009.09.05      或      http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2009/V/I9/28

[1] Price D D. Networks of Science Papers[J]. Science, 1965, 149(3683): 510-515.
 [2] Small H, Griffith B C. The Structure of Scientific Literatures I: Identifying and Graphing Specialties[J]. Science Studies, 1974, 4(1): 17-40.
 [3] Garfield E. Research Fronts[J]. Current Contents, 1994(41):3-7.
 [4] Persson O. The Intellectual Base and Research Fronts of JASIS 1986–1990[J]. Journal of the American Society for Information Science, 1994, 45(1): 31-38.
 [5] Research Front Methodology[EB/OL]. [2009-06-02]. http://www.esi-topics.com/RFmethodology.html.
 [6] Small H. Tracking and Predicting Growth Areas in Science[J]. Scientometrics, 2006, 68(3): 595-610.
 [7] Small H, Upham P. Citation Structure of an Emerging Research Area on the Verge of Application[J]. Scientometrics, 2009, 79(2): 365-375.
 [8] 侯海燕. 科学计量学知识图谱[M]. 大连: 大连理工大学出版社, 2008.
 [9] Chen C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377.
[10] 韩涛. 知识结构演化深度分析的方法及其实现[D]. 北京: 中国科学院研究生院, 2008.
[11] Van Den Besselaar P, Heimeriks G. Mapping Research Topics Using Word-reference Co-occurrences: A  Method and an Exploratory Case Study[J]. Scientometrics, 2006, 68(3): 377-393.
[12] Morris S A, Yen G, Wu Z, et al. Time Line Visualization of Research Fronts[J]. Journal of the American Society for Information Science and Technology, 2003, 54(5): 413-422.
[13] Girvan M, Newman M E J. Community Structure in Social and Biological Networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826.
[14] 李晓佳,张鹏,狄增如,等. 复杂网络中的社团结构[J]. 复杂系统与复杂性科学,2008, 5(3): 19-42.
[15] Klavans R, Boyack K W. Identifying a Better Measure of Relatedness for Mapping Science[J]. Journal of the American Society for Information Science and Technology, 2006, 57(2): 251-263.
[16] Shibata N, Kajikawa Y, Takeda Y, et al. Detecting Emerging Research Fronts Based on Topological Measures in Citation Networks of Scientific Publications[J]. Technovation, 2008, 28(11): 758-775.
[17] Takeda Y, Kajikawa Y. Optics: A Bibliometric Approach to Detect Emerging Research Domains and Intellectual Bases[J]. Scientometrics, 2009, 78(3): 543-558.
[18] Fan Y, Li M, Zhang P, et al. The Effect of Weight on Community Structure of Networks[J]. Physica A, 2007, 378(2): 583-590.
[19] Newman M E J. Analysis of Weighted Networks[J]. Physical Review E, 2004, 70(5): 1-9.
[20] Blondel V D, Guillaume J, Lambiotte R, et al. Fast Unfolding of Communities in Large Networks[J/OL]. http://www.iop.org/EJ/article/1742-5468/2008/10/P10008/jstat8_10_p10008.pdf?request-id=21e4d48e-6653-4f79-8370-4105ea69c37a.
[21] Wallace M L, Gingras Y, Duhon R. A New Approach for Detecting Scientific Specialties[J]. Journal of the American Society for Information Science and Technology, 2009, 60(2): 241-246.
[22] Shibata N, Kajikawa Y, Takeda Y, et al. Comparative Study on Methods of Detecting Research Fronts Using Different Types of Citation[J]. Journal of the American Society for Information Science and Technology, 2009, 60(3): 571-580.
[23] Kleinberg J. Bursty and Hierarchical Structure in Streams[J]. Data Mining and Knowledge Discovery, 2003, 7(4): 373-397.
[24] Mane K K, Borner K. Mapping Topics and Topic Bursts in PNAS[J].Proceedings of the National Academy of Sciences of the United States of America, 2004,101(Suppl 1):5287-5290.
[25] Havre S,Hetzler E, Whitney P,et al. ThemeRiver: Visualizing Thematic Changes in Large Document Collections[J]. IEEE Transactions on Visualization and Computer Graphics, 2002, 8(1): 9-20.
[26] Swan R, Jensen D. TimeMines:Constructing Timelines with Statistical Models of Word Usage[C]. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,USA: ACM Press, 2000: 73-80.
[27] 冯璐,冷伏海. 共词分析方法理论进展[J]. 中国图书馆学报, 2006, 32(2): 88-92.
[28] 张晗,崔雷. 生物信息学的共词分析研究[J]. 情报学报, 2003, 22(5): 613-617.
[29] 蒋颖. 1995-2004年文献计量学研究的共词分析[J]. 情报学报, 2006, 25(4): 503-512.
[30] Pottenger W M, Yang T. Detecting Emerging Concepts in Text Data Mining[A].// Berry M. Computational Information Retrieval[M].Philadelphia,  USA :Society for Industrial and Applied Mathematics, 2001: 89-105.
[31] Kontostathis A, Holzman L E, Pottenger W M. Use of Term Clusters for Emerging Trend Detection[EB/OL]. [2009-08-07]. http://webpages.ursinus.edu/akontostathis/kontostathisETD.ps.
[32] 吴清强. 主题结构构建优化技术研究[D]. 北京: 中国科学院研究生院, 2008.
[33] Kontostathis A, Galitsky L M, Pottenger W M, et al. A Survey of Emerging Trend Detection in Textual Data Mining[A].// Berry M W. Survey of Text Mining: Clustering, Classification, and Retrieval[M]. New York:Springer-Verlag, 2004: 185-224.
[34] Hoang L M. Emerging Trends Detection from Scientific Online Documents[D]. Japan Advanced Institute of Science and Technology, 2006.

[1] 程齐凯,王佳敏,陆伟. 基于引用共词网络的领域基础词汇发现研究*[J]. 数据分析与知识发现, 2019, 3(6): 57-65.
[2] 卢超, 章成志. 基于引文内容的单篇学术论文参考文献网络结构研究[J]. 现代图书情报技术, 2014, 30(10): 33-41.
[3] 赵宇翔,彭希羡. 媒体即社区?信息系统领域基于文献的研究主题分析*[J]. 现代图书情报技术, 2014, 30(1): 56-65.
[4] 张素芳,宋虎. 论文引文检索与分析自动化系统的构建[J]. 现代图书情报技术, 2014, 30(1): 92-96.
[5] 胡昌平, 陈果. 共词分析中的词语贡献度特征选择研究[J]. 现代图书情报技术, 2013, 29(7/8): 89-93.
[6] 唐晓波, 肖璐. 融合关键词增补与领域本体的共词分析方法研究[J]. 现代图书情报技术, 2013, 29(11): 60-67.
[7] 陈仕吉, 史丽文, 李冬梅, 左文革. 论文被引频次标准化方法述评[J]. 现代图书情报技术, 2012, 28(4): 54-60.
[8] 范云满, 马建霞. 利用LDA的领域新兴主题探测技术综述[J]. 现代图书情报技术, 2012, (12): 58-65.
[9] 胡志刚, 陈超美, 刘则渊, 侯海燕. 基于XML全文数据引文分析系统的设计与实现[J]. 现代图书情报技术, 2012, (11): 72-77.
[10] 叶春蕾, 冷伏海. 科技文献全文主题识别方法实证研究[J]. 现代图书情报技术, 2012, 28(1): 53-57.
[11] 陆伟, 彭玉, 陈武. 基于SOM的领域热点主题探测[J]. 现代图书情报技术, 2011, 27(1): 63-68.
[12] 杨颖, 崔雷. 应用改进的共词聚类法探索医学信息学热点主题演变[J]. 现代图书情报技术, 2011, 27(1): 83-87.
[13] 王立学,冷伏海,王海霞. 技术成熟度及其识别方法研究*[J]. 现代图书情报技术, 2010, 26(3): 58-63.
[14] 陈亦佳,赵星. 基于期刊引文网络视角研究国际图书馆学情报学知识交流[J]. 现代图书情报技术, 2009, 25(6): 55-60.
[15] 王建冬. 基于复杂网络方法的国内信息服务研究概念网络分析[J]. 现代图书情报技术, 2009, (10): 56-61.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn