Please wait a minute...
Advanced Search
现代图书情报技术  2010, Vol. 26 Issue (11): 17-23    DOI: 10.11925/infotech.1003-3513.2010.11.03
  数字图书馆 本期目录 | 过刊浏览 | 高级检索 |
毕强, 滕广青
吉林大学管理学院 长春130022
Analysis of the Progress and Hotspots in Applied Research of FCA and Concept Lattice Theory Abroad
Bi Qiang, Teng Guangqing
School of Management, Jilin University, Changchun 130022,China
全文: PDF(407 KB)   HTML  
输出: BibTeX | EndNote (RIS)      


E-mail Alert
关键词 形式概念分析概念格前沿进展研究热点    

This article reviews and sums up the literatures on applied research of Formal Concept Analysis(FCA) and concept lattice theory abroad. It also analyzes the frontier development and research hotspots in four domains, namely study of Ontology, software engineering, knowledge discovery and semantic Web retrieval, which are the most representative and infective characters. In addition, it makes a prospect on the future research.

Key wordsFormal concept analysis    Concept lattice    Frontier development    Research hotspots
收稿日期: 2010-10-18     




毕强, 滕广青. 国外形式概念分析与概念格理论应用研究的前沿进展及热点分析[J]. 现代图书情报技术, 2010, 26(11): 17-23.
Bi Qiang, Teng Guangqing. Analysis of the Progress and Hotspots in Applied Research of FCA and Concept Lattice Theory Abroad. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2010.11.03.

[1] Wille R. Restructuring Lattice Theory: An Approach Based on Hierarchies of Concept
[C]. In: Proceedings of the 7th International Conference on Formal Concept Analysis. Berlin: Springer-Verlag, 2009:314-339.

[2] Ganter B, Wille R. Applied Lattice Theory: Formal Concept Analysis

[3] Studer R, Benjamins V R, Dieter F. Knowledge Engineering: Principles and Methods
[J]. Data & Knowledge Engineering, 1998, 25(1-2):161-197.

[4] Obitko M, Snáel V, Smid J. Ontology Design with Formal Concept Analysis

[5] Formica A. Ontology-based Concept Similarity in Formal Concept Analysis
[J]. Information Sciences, 2006, 176(18):2624-2641.

[6] Bendaoud R, Napoli A, Toussaint Y. Formal Concept Analysis: A Unified Framework for Building and Refining Ontologies
[C]. In: Proceedings of the 16th International Conference on Knowledge Engineering: Practice and Patterns. Berlin: Springer-Verlag, 2008:156-171.

[7] Choi N, Song I, Han H. A Survey on Ontology Mapping
[J]. ACM SIGMOD Record, 2006, 35(3):34-41.

[8] Kalfoglou Y, Schorlemmer M. Ontology Mapping: The State of The Art
[J].The Knowledge Engineering Review, 2003, 18(1):1-31.

[9] Stumme G, Maedche A. FCA-MERGE: Bottom-up Merging of Ontologies
[C]. In: Proceedings of the 17th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2001:225-230.

[10] Zhao Y, Halang W. Rough Concept Lattice Based Ontology Similarity Measure

[11] Tilley T, Cole R, Becker P, et al. A Survey of Formal Concept Analysis Support for Software Engineering Activities

[12] Tonella P. Formal Concept Analysis in Software Engineering
[C]. In: Proceedings of the 26th International Conference on Software Engineering. Washington DC.: IEEE Computer Society, 2004:743-744.

[13] Eisenbarth T, Koschke R, Simon D. Locating Features in Source Code
[J]. IEEE Transactions on Software Engineering, 2003, 29(3):210-224.

[14] Godin R, Valtchev P. Formal Concept Analysis-based Class Hierarchy Design in Object-oriented Software Development

[15] Al-Ekram R, Kontogiannis K. Source Code Modularization Using Lattice of Concept Slices
[C]. In: Proceedings of the 8th Euromicro Working Conference on Software Maintenance and Reengineering. Washington DC.: IEEE Computer Society, 2004:195-203.

[16] Tonella P. Using a Concept Lattice of Decomposition Slices for Program Understanding and Impact Analysis
[J]. IEEE Transactions on Software Engineering, 2003, 29(6):495-509.

[17] Fabbrini F, Fusani M, Gnesi S, et al. Controlling Requirements Evolution: A Formal Concept Analysis-based Approach

[18] Stumme G, Wille R, Wille U. Conceptual Knowledge Discovery in Databases Using Formal Concept Analysis Methods

[19] Stumme G. Conceptual Knowledge Discovery with Frequent Concept Lattices

[20] Hereth J, Stumme G, Wille R, et al. Conceptual Knowledge Discovery and Data Analysis

[21] Stumme G, Taouil R, Bastide Y, et al. Fast Computation of Concept Lattices Using Data Mining Technics

[22] Bastide Y, Pasquier N, Taouil R, et al. Mining Minimal Non-redundant Association Rules Using Frequent Closed Itemsets

[23] Stumme G. Efficient Data Mining Based on Formal Concept Analysis
[C]. In: Proceedings of the 13th International Conference on Database and Expert Systems Applications. London: Springer-Verlag, 2002:534-546.

[24] Schmitz C, Hotho A, Jschke R,et al. Mining Association Rules in Folksonomies

[25] Cattuto C, Benz D, Hotho A, et al. Semantic Grounding of Tag Relatedness in Social Bookmarking Systems
[C]. In: Proceedings of the 7th International Conference on the Semantic Web. Berlin: Springer-Verlag, 2008:615-631.

[26] Krause B, Schmitz C, Hotho A, et al. The Anti-Social Tagger: Detecting Spam in Social Bookmarking Systems
[C]. In: Proceedings of the 4th International Workshop on Adversarial Information Retrieval on the Web. New York: ACM, 2008:61-68.

[27] Markines B, Cattuto C, Benz D, et al. Evaluating Similarity Measures for Emergent Semantics of Social Tagging
[C]. In: Proceedings of the 18th International Conference on World Wide Web. New York: ACM, 2009:641-650.

[28] Godin R, Missaoui R, April A. Experimental Comparison of Navigation in a Galois Lattice with Conventional Information Retrieval
[J]. International Journal of Man-Machine Studies, 1993, 38(5):747-767.

[29] Carpineto C, Romano G. Information Retrieval Through Hybrid Navigation of Lattice Representations
[J]. International Journal of Human-Computers Studies, 1996, 45(5):553-578.

[30] Kim M, Compton P. Formal Concept Analysis for Domain-Specific Document Retrieval Systems

[31] Cigarrán M J, Gonzalo J, Peas A, et al. Browsing Search Results via Formal Concept Analysis Automatic Selection of Attributes

[32] Rome E J, Haralick M R. Towards a Formal Concept Analysis Approach to Exploring Communities on the World Wide Web

[33] Messai N, Devignes M, Napoli A, et al. Extending Attribute Dependencies for Lattice-Based Querying and Navigation
[C]. In: Proceedings of the 16th International Conference on Conceptual Structures: Knowledge Visualization and Reasoning. Berlin: Springer-Verlag, 2008:189-202.

[34] Carpineto C, Romano G. Exploiting the Potential of Concept Lattices for Information Retrieval with CREDO

[35] Cheung S K K, Vogel D. Complexity Reduction in Lattice-based Information Retrieval
[J]. Information Retrieval, 2005, 8(2):285-299.

[36] Yadav B S. A Conceptual Model for User-centered Quality Information Retrieval on the World Wide Web
[J]. Journal of Intelligent Information Systems,2010,35(1):91-121.

[37] Call for Papers: 9th International Conference on Formal Concept Analysis (ICFCA2011)

[1] 吴江,刘冠君,胡仙. 在线医疗健康研究的系统综述: 研究热点、主题演化和研究方法*[J]. 数据分析与知识发现, 2019, 3(4): 2-12.
[2] 庞贝贝,苟娟琼,穆文歆. 面向高校学生深度辅导领域的主题建模和主题上下位关系识别研究*[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[3] 刘萍,李亚楠,郁聪. 面向学术搜索的交互式知识地图建构研究*[J]. 数据分析与知识发现, 2018, 2(12): 43-51.
[4] 张轩慧,赵宇翔. 国际公众科学领域演化路径与研究热点分析*[J]. 数据分析与知识发现, 2017, 1(7): 22-34.
[5] 杨超凡,邓仲华,彭鑫,刘斌. 近5年信息检索的研究热点与发展趋势综述*——基于相关会议论文的分析[J]. 数据分析与知识发现, 2017, 1(7): 35-43.
[6] 陆佳莹,袁勤俭,黄奇,钱韵洁. 基于概念格理论的产品领域本体构建研究*[J]. 现代图书情报技术, 2016, 32(5): 38-46.
[7] 王曰芬,傅柱,陈必坤. 采用LDA主题模型的国内知识流研究结构探讨: 以学科分类主题抽取为视角*[J]. 现代图书情报技术, 2016, 32(4): 8-19.
[8] 王萍, 支凤稳, 王毅, 沈涛. 运用概念格分析企业竞争情报需求[J]. 现代图书情报技术, 2013, 29(10): 66-72.
[9] 张云中. 利用形式概念分析构建Folksonomy用户行为知识发现模型[J]. 现代图书情报技术, 2012, 28(7): 66-75.
[10] 王莉. 基于关键词链的动态分面研究[J]. 现代图书情报技术, 2012, 28(7): 76-81.
[11] 滕广青, 毕强, 高娅. 基于概念格的Folksonomy知识组织研究——关联标签的结构特征分析[J]. 现代图书情报技术, 2012, 28(6): 22-28.
[12] 徐坤, 曹锦丹, 毕强. FCA在医学领域文本分类中的研究和应用[J]. 现代图书情报技术, 2012, 28(3): 23-26.
[13] 毕强, 鲍玉来. 基于领域本体和RSS的OA资源集成门户设计与实现[J]. 现代图书情报技术, 2012, 28(3): 78-82.
[14] 滕广青, 毕强, 鲍玉来. 基于粒度概念分析法的文献关键词分析——以Ontology领域关键词为例[J]. 现代图书情报技术, 2011, 27(9): 1-6.
[15] 张云中, 杨萌, 徐宝祥. 基于FCA的Folksonomy用户偏好挖掘研究[J]. 现代图书情报技术, 2011, 27(6): 72-78.
Full text



版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190