Please wait a minute...
Advanced Search
现代图书情报技术  2012, Vol. 28 Issue (2): 34-40    DOI: 10.11925/infotech.1003-3513.2012.02.06
  知识组织与知识管理 本期目录 | 过刊浏览 | 高级检索 |
基于FCA和关联规则的情报学本体构建
刘萍, 胡月红
武汉大学信息资源研究中心 武汉 430072
Development of Domain Ontology in Information Science Based on FCA and Association Rules
Liu Ping, Hu Yuehong
Center for Studies of Information Resources, Wuhan University, Wuhan 430072, China
全文: PDF(840 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 提出一种新的领域本体学习方法,结合形式概念分析(FCA)与关联规则挖掘从非结构化文本中获取情报学本体。该方法从文本集中通过种子-扩展机制的方法获取领域核心概念,构建文档概念格(文档×关键词矩阵),在此基础上通过形式概念分析方法来识别概念之间的等级关系,通过关联规则挖掘概念间的相关关系。最后,采用基于“黄金标准”的方法对本体学习的结果进行评价,结果表明:通过这种方法构建的本体可以达到较高的领域知识覆盖率, 而且能够识别概念之间部分隐含的关系, 从而验证该方法在领域本体的构建中实用且有效。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡月红
刘萍
关键词 本体构建情报学FCA关联规则    
Abstract:This paper presents a new approach to Ontology learning in the domain of information science. A combination of Formal Concept Analysis (FCA) and association rules is used to facilitate Ontology construction from unstructured text. This approach acquires key concepts from documents by using a seeding and expansion mechanism; formulates (key concept by document) context for concept lattice construction, and bootstraps the learning of domain-specific concept hierarchies using FCA; extracts the relationships between the concepts via association rules. To evaluate the quality of the learned Ontology, a comparison with “Golden Standard” is undertaken, and the evaluation results illustrate that it can reach high domain coverage and identify some implicit relations between concepts. It is concluded that the proposed method is practical and useful to support the process of building domain Ontology.
Key wordsOntology development    Information science    FCA    Association rule
收稿日期: 2011-09-08     
: 

TP391

 
基金资助:

本文系教育部人文社会科学研究青年基金项目“高校专家知识地图构建研究”(项目编号:10YJC870022)的研究成果之一。

引用本文:   
刘萍, 胡月红. 基于FCA和关联规则的情报学本体构建[J]. 现代图书情报技术, 2012, 28(2): 34-40.
Liu Ping, Hu Yuehong. Development of Domain Ontology in Information Science Based on FCA and Association Rules. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2012.02.06.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2012.02.06
[1] 王崇德. 情报学简介[M]. 天津:天津大学出版社,1993:30-33.(Wang Chongde. Introduction to Information Science[M]. Tianjin: Tianjin University Press, 1993: 30-33.)

[2] Wille R. Restructuring Lattice Theory: An Approach Based on Hierarchies of Concepts[C]. In: the Ordered sets Dordrecht—Boston, Reidel, 1982: 445-470.

[3] 滕广青,毕强. 国外形式概念分析与概念格理论应用研究的前沿进展及热点分析[J]. 现代图书情报技术 ,2010(11):17-23.(Teng Guangqing, Bi Qiang. Analysis of the Progress and Hotspots in Applied Research of FCA and Concept Lattice Theory Abroad[J]. New Technology of Library and Information Service, 2010(11):17-23.)

[4] 张云中.基于形式概念分析的领域本体构建方法研究[D]. 长春:吉林大学, 2009.(Zhang Yunzhong. Research on Domain Ontology Construction Method Based on Formal Concept Analysis[D]. Changchun: Jilin University, 2009.)

[5] Cimiano P, Stumme G, Hotho A, et al. Conceptual Knowledge Processing with Formal Concept Analysis and Ontologies[C]. In: Proceedings of the 2nd International Conference on Formal Concept Analysis (ICFCA). Springer, 2004:189-207.

[6] Gu T. Using Formal Concept Analysis for Ontology Structuring and Building[C]. In: Proceedings of the International Standard Industrial Classification(ISIC). Nanyang Technological University, 2003.

[7] Haav H M. A Semi-automatic Method to Ontology Design by Using FCA[C]. In: Proceedings of the 2nd International CLA Workshop, Concept Lattices and Their Applications. Technical University of Ostrava, 2004: 13-25.

[8] Obitko M, Snáel V, Smid J. Ontology Design with Formal Concept Analysis [C]. In: Proceedings of the CLA 2004 International Workshop on Concept Lattices and Their Applications. Technical University of Ostrava, 2004: 111-119.

[9] Han J, Kamber M. Data Mining: Concepts and Techniques [R/OL]. [2011-01-23]. http://134.208.3.165/course/2006/Fall/Data_mining/06.pdf.

[10] Maedche A, Staab S. Discovering Conceptual Relations from Text[C]. In: Proceedings of the European Conference on Artificial Intelligence (ECAI). Amsterdam:IOS Press, 2000: 321-325.

[11] Maedche A, Staab S. Ontology Learning for the Semantic Web[C]. In: Proceedings of the IEEE Intelligent Systems. 2001: 72-79.

[12] Noy N F, McGuinness D L. Ontology Development 101: A Guide to Creating Your First Ontology[R]. Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics Technical Report SMI-2001-0880, 2001:4-23.

[13] Uschold M, Gruninger M. Ontologies: Principles, Methods and Applications[J]. Knowledge Engneer Revision,1996,11 (2):93-155.

[14] 何琳. 领域本体的半自动构建及检索研究[M]. 南京:东南大学出版社, 2009:99-100.(He Lin. Research on Semi-automatic Construction and Retrieval of Domain Ontology[M]. Nanjing: Southeast University Press, 2009:99-100.)

[15] Ji D H, Zhao S J, Xiao G Z. Chinese Document Re-ranking Based on Automatically Acquired Term Resource[J]. Language Resource & Evaluation, 2009, 43(4):385-406.

[16] Yang Y M, Pederson J O. A Comparative Study on Feature Selection in Text Categorization[C]. In: Proceedings of the 14th International Conference on Machine Learning. Nashville:Morgan Kaufmann, 1997:412-420.

[17] 王俊华. 基于文本的半监督领域本体构建[D]. 长春: 吉林大学, 2010:19-45.(Wang Junhua. Semi-supervised Domain Ontology Building Based on Text[D]. Changchun: Jilin University, 2010:19-45.)

[18] Overview on ConExp[EB/OL]. [2011-06-28]. http: //conexp.sourceforge.net /users.

[19] IHMC CmapTools [EB/OL]. [2011-03-18]. http://cmap.ihmc.us/download/.

[20] 杜小勇,马文峰.领域本体评价研究[J]. 图书情报工作 ,2006,50(10):68-72.(Du Xiaoyong, Ma Wenfeng. An Evaluation Framework for Domain Ontology[J]. Library and Information Service, 2006,50(10):68-72.)

[21] 何琳.领域本体评价研究[J]. 图书馆杂志 ,2010,29(2):57-62.(He Lin. Research on Evaluation Mechanism of Domain Ontology[J]. Library Journal, 2010,29(2):57-62.)

[22] Bates M J. An Operational Definition of the Information Disciplines [EB/OL]. [2011-03-20].http://gseis.ucla.edu/faculty/bates/articles/pdf/Contribution512-1.pdf.

[23] Sabou M, Wroe C, Goble C, et al. Learning Domain Ontologies for Web Service Descriptions: An Experiment in Bioinformatics[C]. In: Proceedings of the 14th International World Wide Web Conference Committee (WWW2005). New York: ACM Press, 2005:190-198.
[1] 邓诗琦,洪亮. 面向智能应用的领域本体构建研究*——以反电话诈骗领域为例[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[2] 张勇,李树青,程永上. 基于频次有效长度的加权关联规则挖掘算法研究 *[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
[3] 何跃,丰月,赵书朋,马玉凤. 基于知乎问答社区的内容推荐研究——以物流话题为例[J]. 数据分析与知识发现, 2018, 2(9): 42-49.
[4] 何跃,王爱欣,丰月,王莉. 基于关联规则的门诊药房布局优化[J]. 数据分析与知识发现, 2018, 2(1): 99-108.
[5] 魏星,胡德华,易敏寒,朱启贞,朱文婕. 基于数据立方体挖掘疾病-基因-药物新关联*[J]. 数据分析与知识发现, 2017, 1(10): 94-104.
[6] 黄名选. 基于矩阵加权关联模式的印尼中跨语言信息检索模型*[J]. 数据分析与知识发现, 2017, 1(1): 26-36.
[7] 陆佳莹,袁勤俭,黄奇,钱韵洁. 基于概念格理论的产品领域本体构建研究*[J]. 现代图书情报技术, 2016, 32(5): 38-46.
[8] 阮光册, 夏磊. 基于关联规则的文本主题深度挖掘应用研究*[J]. 数据分析与知识发现, 2016, 32(12): 50-56.
[9] 杜思奇, 李红莲, 吕学强. 汉语组块分析在产品特征提取中的应用研究[J]. 现代图书情报技术, 2015, 31(9): 26-30.
[10] 郝玫, 王道平. 面向供应链的产品评论中客户关注特征挖掘方法研究[J]. 现代图书情报技术, 2014, 30(4): 65-70.
[11] 颜时彦, 王胜清, 罗云川, 黄浩军. 云环境下基于FCA的领域本体协作构建模式初探[J]. 现代图书情报技术, 2014, 30(3): 49-56.
[12] 邱均平, 余厚强. 从VAST会议解读可视分析学新进展[J]. 现代图书情报技术, 2014, 30(10): 14-24.
[13] 刘巍, 祝忠明, 张旺强, 王思丽, 姚晓娜, 卢利农. 利用转化SKOS和关联规则挖掘创建本体及其检索应用[J]. 现代图书情报技术, 2013, 29(7/8): 22-27.
[14] 何金晶, 窦永香. 社会化标注系统中的本体研究综述[J]. 现代图书情报技术, 2013, (6): 16-22.
[15] 薛建武, 赵娜, 王东娜. 面向本体构建的叙词表词间关系细化和应用研究[J]. 现代图书情报技术, 2013, 29(3): 14-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn