Please wait a minute...
Advanced Search
现代图书情报技术  2012, Vol. 28 Issue (7): 66-75    DOI: 10.11925/infotech.1003-3513.2012.07.11
  知识组织与知识管理 本期目录 | 过刊浏览 | 高级检索 |
利用形式概念分析构建Folksonomy用户行为知识发现模型
张云中
吉林大学管理学院 长春 130022
Using Formal Concept Analysis to Construct the Model of User Behavior Knowledge Discovery in Folksonomy
Zhang Yunzhong
School of Management, Jilin University, Changchun 130022, China
全文: PDF(1635 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 针对当前国际学术界在Folksonomy用户行为知识发现相关研究中出现的问题,提出一种基于形式概念分析的Folksonomy用户行为知识发现模型。该模型共包括问题定义、数据获取、数据准备、数据组织、数据挖掘、知识生成和评估反馈7个功能模块,其核心思路是在基于“FU:= (U,T×R, YU)”形式背景的数据组织基础上,采用外延映射法和回溯法分别实现基于概念格的Folksonomy用户行为共性知识和个性知识的可视化数据挖掘,并分别用Folksonomy用户群层次结构和Folksonomy单用户标记行为链分别作为知识生成方式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张云中
关键词 形式概念分析自由分类法用户行为知识发现    
Abstract:In allusion to the limitations of current researches of international academic community for UBKD in Folksonomy, a FCA-based UBKD model in Folksonomy is proposed in this paper. The model consists of seven functional modules:problem definition, data acquisition, data preparation, data organization, data mining, knowledge generation and evaluation & feedback. The core idea of the model lists as follows:on the basis of data organization which using the “FU:= (U,T×R, YU)” context, a visual data mining of common knowledge and personalized knowledge for UBKD in Folksonomy based on concept lattice is respectively achieved by the method called “external mapping” and “backtrack”, and finally the user group hierarchy and the single user behavior chain are respectively constructed.
Key wordsFormal concept analysis    Folksonomy    User behavior    Knowledge discovery
收稿日期: 2012-06-16     
: 

G254.11

 
引用本文:   
张云中. 利用形式概念分析构建Folksonomy用户行为知识发现模型[J]. 现代图书情报技术, 2012, 28(7): 66-75.
Zhang Yunzhong. Using Formal Concept Analysis to Construct the Model of User Behavior Knowledge Discovery in Folksonomy. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2012.07.11.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2012.07.11
[1] 王翠英. 基于Folksonomy的用户偏好研究进展[J]. 现代图书情报技术 ,2009 (6):37-43.(Wang Cuiying. Research Development of Folksonomy-based User Profile[J].New Technology of Library and Information Service,2009 (6):37-43.)

[2] Sen S, Lam S K, Rashid A M, et al. Tagging, Communities, Vocabulary, Evolution[C]. In:Proceedings of the 20th Anniversary Conference on Computer Supported Cooperative Work(CSCW’06). New York:ACM Press, 2006:181-190.

[3] Golder S A, Huberman B A. Usage Patterns of Collaborative Tagging Systems[J].Journal of Information Science, 2006, 32(2):198-208.

[4] Sinha R. A Cognitive Analysis of Tagging[EB/OL].[2011-09-03].http://blog.jackvinson.com/archives/2005/10/01/a_cognitive_analysis_of_tagging.html.

[5] Szekely B, Torres E. Ranking Bookmarks and Bistros:Intelligent Community and Folksonomy Development[EB/OL].[2011-09-03].http://labs.rightnow.com/colloquium/papers/tagrank.pdf.

[6] Cattuto C, Loreto V, Pietronero L.Collaborative Tagging and Semiotic Dynamics[EB/OL].[2011-09-03].http://arxiv.org/pdf/cs/0605015v1.

[7] Yeung C A, Gibbins N, Shadbolt N. Collective User Behaviour and Tag Contextualisation in Folksonomies[EB/OL]. [2011-07-29].http://eprints.ecs.soton.ac.uk/16990/1/cmauyeung-CollectiveFolksonomy.pdf.

[8] Binkowski P J.The Effect of Social Proof on Tag Selection in Social Bookmarking Applications[EB/OL].[2011-09-03].http://www.libsearch.com/view/595206.

[9] Gattis L. Planning and Information Foraging Theories and Their Value to the Novice Technical Communicator[J]. ACM Journal of Computer Documentation,2002,26(4):168-175.

[10] Cosley D, Lam S K, Albert I, et al. Is Seeing Believing? How Recommender System Interfaces Affect Users’Opinions[C].In:Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI’03). New York:ACM Press,2003:585-592.

[11] Mathes A. Folksonomies-Cooperative Classification and Communication Through Shared Metadata[EB/OL].[2011-10-14].http://www.adammathes.com/academic/computer-mediated-communication/folksonomies.html.

[12] Guy M, Tonkin E. Folksonomies:Tidying up Tags?[J/OL].D-Lib Magazine,2006,12(1). [2011-10-16]. http://www.dlib.org/dlib/january06/guy/01guy.html.

[13] Marlow C, Naaman M, Boyd D, et al. Position Paper, Tagging, Taxonomy, Flickr, Article, ToRead[EB/OL].[2011-10-16]. http://www.danah.org/papers/WWW2006.pdf.

[14] Millen D R, Feinberg J, Kerr B. Dogear:Social Bookmarking in the Enterprise[C]. In:Proceedings of the SIGCHI Conference on Human Factors in Computing Systems(CHI ’06).New York:ACM Press,2006:111-120.

[15] Lund B,Hammond T, Flack M, et al.Social Bookmarking Tools (II):A Case Study-Connotea [J/OL].D-Lib Magazine, 2005, 11(4). [2011-10-16].http://dlib.org/dlib/april05/lund/04lund.html.

[16] Wetzker R, Zimmermann C, Bauckhage C. Analyzing Social Bookmarking Systems:A del.icio.us Cookbook[EB/OL].[2011-10-29].http://www.dai-labor.de/fileadmin/files/publications/wetzker_delicious_ecai2008_final.pdf.

[17] Krause B, Schmitz C, Hotho A, et al. The Anti-Social Tagger-Detecting Spam in Social Bookmarking Systems [EB/OL].[2011-10-29].http://www.cs.xu.edu/csci390/09s/krause_2008_anti_social_tagger.pdf.

[18] Koutrika G, Effendi A,Gyongyi Z, et al. Combating Spam in Tagging Systems: An Evaluation[EB/OL]. [2011-10-29].http://ilpubs.stanford.edu:8090/816/1/2007-30.pdf.

[19] 石豪,李红娟,赖雯,等. 基于Folksonomy标签的用户分类研究[J]. 图书情报工作 ,2011,55(2):117-120.(Shi Hao, Li Hongjuan, Lai Wen, et al. Study of Users Classification Based on Folksonomy Tags[J]. Library and Information Service, 2011,55(2):117-120.)

[20] 苏杨,石豪,赖雯,等. 利用同义词环改进基于Folksonomy的用户分类[J]. 图书情报工作 ,2011,55(8):58-61.(Su Yang, Shi Hao, Lai Wen, et al. Using Synonym Rings to Improve the User Classification According to Folksonomy Tags[J]. Library and Information Service, 2011,55(8):58-61.)

[21] Hotho A, Jaschke R, Schmitz C, et al. Information Retrieval in Folksonomies:Search and Ranking[C].In:Proceedings of the 3rd European Conference on the Semantic Web:Research and Applications(ESWC’06). Heidelberg, Berlin:Springer-Verlag, 2006:411-426.

[22] Hotho A, Jaschke R, Schmitz C, et al. Trend Detection in Folksonomies[C]. In:Proceedings of the 1st International Conference on Semantic and Digital Media Technologies(SAMT’06). Heidelberg, Berlin:Springer-Verlag, 2006:56-70.

[23] Jaschke R, Hotho A, Schmitz C, et al. Discovering Shared Conceptualizations in Folksonomies[J].Journal of Web Semantics, 2008,6(1):38-53.

[24] 张云中,杨萌,徐宝祥. 基于FCA的Folksonomy用户偏好挖掘研究[J]. 现代图书情报技术 , 2011(6):72-78.(Zhang Yunzhong, Yang Meng, Xu Baoxiang. Research on FCA-based User Profile Mining for Folksonomy[J].New Technology of Library and Information Service,2011(6):72-78.)

[25] 毛国君,段立娟,王实,等. 数据挖掘原理与算法[M].北京:清华大学出版社, 2005:41-47.(Mao Guojun, Duan Lijuan, Wang Shi, et al. Principle and Algorithm of Data Mining[M].Beijing:Tsinghua University Press, 2005:41-47.)

[26] Galicia Lattice Builder[EB/OL].[2011-12-20].http://www.iro.umontreal.ca/~galicia/.

[27] Delicious Data [EB/OL]. [2012-02-23]. http://www.delicious.com/stacks/view/LPCRfg.
[1] 胡佳慧,方安,赵琬清,杨晨柳,任慧玲. 面向知识发现的中文电子病历标注方法
研究 *
[J]. 数据分析与知识发现, 2019, 3(7): 123-132.
[2] 安璐,梁艳平. 突发公共卫生事件微博话题与用户行为选择研究*[J]. 数据分析与知识发现, 2019, 3(4): 33-41.
[3] 吴菊华,王煜,黎明,蔡少云. 基于加权知识网络的在线健康社区用户知识发现*[J]. 数据分析与知识发现, 2019, 3(2): 108-117.
[4] 席林娜,窦永香. 基于计划行为理论的微博用户转发行为影响因素研究*[J]. 数据分析与知识发现, 2019, 3(2): 13-20.
[5] 胡吉颖,谢靖,钱力,付常雷. 基于知识图谱的科技大数据知识发现平台建设*[J]. 数据分析与知识发现, 2019, 3(1): 55-62.
[6] 庞贝贝,苟娟琼,穆文歆. 面向高校学生深度辅导领域的主题建模和主题上下位关系识别研究*[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[7] 刘萍,李亚楠,郁聪. 面向学术搜索的交互式知识地图建构研究*[J]. 数据分析与知识发现, 2018, 2(12): 43-51.
[8] 王欣,冯文刚. 在线极端主义和激进化监测技术综述*[J]. 数据分析与知识发现, 2018, 2(10): 2-8.
[9] 张志强,范少萍,陈秀娟. 面向精准医学知识发现的生物医学信息学发展*[J]. 数据分析与知识发现, 2018, 2(1): 1-8.
[10] 牟冬梅,王萍,赵丹宁. 高维电子病历的数据降维策略与实证研究*[J]. 数据分析与知识发现, 2018, 2(1): 88-98.
[11] 陈远,刘福珍,吴江. 基于二模复杂网络的共享经济平台用户交互行为研究*[J]. 数据分析与知识发现, 2017, 1(6): 72-82.
[12] 夏立新,杨金庆,程秀峰. 基于情境感知技术的移动数据自动采集系统设计与实现*[J]. 数据分析与知识发现, 2017, 1(5): 82-93.
[13] 谢秀芳,张晓林. 针对科技路线图的文本挖掘研究: 集成分析及可视化*[J]. 数据分析与知识发现, 2017, 1(1): 16-25.
[14] 王曰芬,贾新露,傅柱. 学术社交网络用户内容使用行为研究*——基于科学网热门博文的实证分析[J]. 现代图书情报技术, 2016, 32(6): 63-72.
[15] 牟冬梅,任珂. 三种数据挖掘算法在电子病历知识发现中的比较*[J]. 现代图书情报技术, 2016, 32(6): 102-109.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn