Please wait a minute...
Advanced Search
现代图书情报技术  2012, Vol. Issue (9): 49-55    DOI: 10.11925/infotech.1003-3513.2012.09.09
  情报分析与研究 本期目录 | 过刊浏览 | 高级检索 |
融合语义聚类的企业竞争力影响因素分析研究
张玉峰, 何超, 王志芳, 周磊
武汉大学信息资源研究中心 武汉 430072
Research on Enterprise Competitiveness Factor Analysis Combining Semantic Clustering
Zhang Yufeng, He Chao, Wang Zhifang, Zhou Lei
Center for Studies of Information Resources of Wuhan University, Wuhan 430072, China
全文: PDF(679 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 将聚类分析融入企业竞争力影响因素挖掘与发现之中,依据本课题组构建的软件企业领域本体,提出基于语义的综合层次聚类分析方法。该方法融合本体与聚类技术创新基于领域本体的聚类分析算法Onto-kmeans,实现语义层面的企业竞争力影响因素分析与获取。实验结果表明,该方法能够显著提高聚类分析的准确率和效率,有效地挖掘与获取影响企业竞争力的全局因素,识别与验证影响企业竞争力的主要因素。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张玉峰
何超
王志芳
周磊
关键词 语义聚类因素分析企业竞争力    
Abstract:This paper integrates clustering into the exploration and discovery of enterprise competitiveness factors,then proposes a semantic-based comprehensive hierarchical clustering analysis method according to the software enterprise domain Ontology constructed by the research team. This method fuses Ontology and clustering technologies, brings forth new ideas for the clustering analysis method based on domain Ontology,that is Onto-kmeans, and achieves the analysis and acquisition of enterprise competitiveness factors at semantic level. The experimental results indicate that this method can significantly improve the accuracy and efficiency of clustering analysis,effectively mine and obtain global factors influencing the competitiveness of software enterprise, identify and verify the major factors.
Key wordsSemantic clustering    Factor analysis    Enterprise competitiveness
收稿日期: 2012-06-19     
: 

G350

 
基金资助:

本文系国家自然科学基金项目“企业竞争情报智能分析模型与方法研究”(项目编号:71073121)和教育部博士研究生学术新人奖“基于数据挖掘的商务情报分析方法研究”的研究成果之一。

通讯作者: 张玉峰     E-mail: yfzhang9@163.com
引用本文:   
张玉峰, 何超, 王志芳, 周磊. 融合语义聚类的企业竞争力影响因素分析研究[J]. 现代图书情报技术, 2012, (9): 49-55.
Zhang Yufeng, He Chao, Wang Zhifang, Zhou Lei. Research on Enterprise Competitiveness Factor Analysis Combining Semantic Clustering. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2012.09.09.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2012.09.09
[1] Hotho A, Staab S, Stumme G. WordNet Improves Text Document Clustering [C]. In: Proceedings of the Semantic Web Workshop of the 26th Annual International ACM SIGIR Conference on Research and Development in Informatioin Retrieval, Toronto, Canada. 2003.
[2] Sedding J, Kazakov D. WordNet-based Text Document Clustering [C]. In: Proceedings of the 3rd Workshop on Robust Methods in Analysis of Natural Language Data(ROMAND’04). Stroudsburg: Association for Computational Linguistics, 2004: 104-113.
[3] Hu X H, Zhang X D, Lu C M, et al. Exploiting Wikipedia as External Knowledge for Document Clustering [C]. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD’09). New York: ACM, 2009:389-396.
[4] Gad W K, Kamel M S. Enhancing Text Clustering Performance Using Semantic Similarity [C]. In: Proceedings of International Conference on Enterprise Information Systems. Berlin: Springer, 2009: 325-335.
[5] Zhu S, Zeng J, Mamitsuka H. Enhancing MEDLINE Document Clustering by Incorporating MeSH Semantic Similarity [J]. Bioinformatics, 2009, 25(15):1944-1951.
[6] Hotho A, Maedche A, Staab S. Text Clustering Based on Good Aggregation[J].Kunstliche Intelligen, 2002, 16(4):48-54.
[7] Kong H, Hwang M, Hwang G, et al. Topic Selection of Web Documents Using Specific Domain Ontology [C]. In: Proceedings of the 5th Mexican International Conference on Artificial Intelligence(MICAI’06). Heidelberg,Berlin: Springer-Verlag, 2006: 1047-1056.
[8] 朱恒民, 马静, 黄卫东.基于领域本体的SOM文本逐层聚类方法[J]. 情报学报, 2008, 27(6): 845-850. (Zhu Hengmin, Ma Jing, Huang Weidong. Layer-by-Layer SOM Text Clustering Method Based on Domain Ontology[J]. Journal of the China Society for Scientific and Technical Information, 2008, 27(6): 845-850.)
[9] Yoo I, Hu X H. Biomedical Ontology MeSH Improves Document Clustering Qualify on MEDLINE Articles: A Comparison Study [C]. In: Proceedings of the 19th IEEE Symposium on Computer-based Medical Systems(CBMS’06). Washington, DC: IEEE Computer Society, 2006: 577-582.
[10] Dong J, Wang S P, Xiong F L. A Method for Domain Conception Clustering with the Guidance of Domain Ontology [C]. In: Proceedings of the 2010 International Conference on Intelligent Computation Technology and Automation(ICICTA’10). Washington, DC: IEEE Computer Society, 2010: 151-155.
[11] 元昌安.数据挖掘原理与SPSS Clementine应用宝典[M].北京:电子工业出版社,2009.(Yuan Chang’an. Data Mining and SPSS Clementine Application [M]. Beijing: Publishing House of Electronics Industry, 2009.)
[12] Hartigan J A, Wong M A. Algorithm AS 136: A K-means Clustering Algorithm [J]. Journal of the Royal Statistical Society-Series C (Applied Statistics), 1979, 28(1): 100-108.
[13] Kanungo T, Mount D M, Netanyahu N S, et al. An Efficient K-means Clustering Algorithm: Analysis and Implementation [J]. IEEE Transactions on Patten Analysis and Machine Intelligence, 2002, 24(7): 881-892.
[14] 张玉峰,何超.基于领域本体的语义文本挖掘研究[J]. 情报学报,2011,30(8):832-839.(Zhang Yufeng, He Chao. Research on Semantic Text Mining Based on Domain Ontology [J]. Journal of the China Society for Scientific and Technical Information, 2011,30(8):832-839.)
[15] Wu Z B, Palmer M. Verb Semantics and Lexical Selection [C].In: Proceedings of the 32nd Annual Meeting on Association for Computational Linguistics(ACL’94). Stroudsburg: Association for Computational Linguistics, 1994:133-138.
[16] Basili R, Cammisa M, Moschitti A. A Semantic Kernel to Classify Texts with Very Few Training Examples [C]. In: Proceedings of the Workshop on Learning in Web Search, at the 22nd International Conference on Machine Learning(ICML 2005). New York: ACM, 2005:163-172.
[1] 张玉峰, 何超, 王志芳, 周磊. 融合语义分类的企业竞争力影响因素分析研究[J]. 现代图书情报技术, 2012, (9): 56-61.
[2] 甘利人,许应楠. 企业信息系统用户接受行为影响因素研究——以ERP系统为例[J]. 现代图书情报技术, 2009, 3(2): 71-77.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn