Please wait a minute...
Advanced Search
现代图书情报技术  2012, Vol. Issue (12): 58-65    DOI: 10.11925/infotech.1003-3513.2012.12.11
  情报分析与研究 本期目录 | 过刊浏览 | 高级检索 |
利用LDA的领域新兴主题探测技术综述
范云满1,2, 马建霞1
1. 中国科学院国家科学图书馆兰州分馆 兰州 730000;
2. 中国科学院大学 北京 100049
Review on the LDA-based Techniques Detection for the Field Emerging Topic
Fan Yunman1,2, Ma Jianxia1
1. The Lanzhou Branch of National Science Library, Chinese Academy of Sciences, Lanzhou 730000, China;
2. University of Chinese Academy of Sciences, Beijing 100049, China
全文: PDF(1147 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 以LDA为基础,系统梳理新兴主题探测以及主题趋势探测技术中的LDA以及其他LDA改进主题模型的发展现状。介绍LDA的变分推导和Gibbs抽样两种参数推导算法;总结近年来LDA模型的改进,包括对主题演化建模的主题模型、对文档内容和元数据联合建模的模型、采用在线式学习的主题模型及将LDA和引文分析相结合的主题演化方法等,并对不同的改进模型进行深入对比和分析;梳理NIH-VB、TIARA、VxInsight等几种主要的主题模型可视化技术。最后通过对LDA模型的总结分析,探讨利用LDA模型探测领域新兴主题时的关键研究问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范云满
马建霞
关键词 主题模型LDA引文分析主题模型可视化    
Abstract:Based on LDA,this paper reviews the development of the LDA model and several models which improve the LDA for the filed emerging topic detection.It describes two parameter inference algorithms of variational derivation and Gibbs sampling, and reviews the improvement of LDA in recent years,including the one modeling the evolution of the topics,the one modeling jointly with the content of document and meta data,the one with online learning, the topic evolution method combining LDA and citation analysis and so on;then compares and analyses different kinds of improvement models in details. The paper also reviews several main visualization techniques such as NIH-VB,TIARA and VxInsight. Finally,it discusses the key research problems of detecting the emerging topic by using LDA.
Key wordsTopic model    LDA    Citation analysis    Topical visualization
收稿日期: 2012-10-15     
:  TP393  
基金资助:本文系中国科学院西部之光联合学者基金项目“基于计算情报方法的甘肃省战略新兴产业技术创新竞争与发展研究”的研究成果之一。
通讯作者: 范云满     E-mail: fanyunman@mail.las.ac.cn
引用本文:   
范云满, 马建霞. 利用LDA的领域新兴主题探测技术综述[J]. 现代图书情报技术, 2012, (12): 58-65.
Fan Yunman, Ma Jianxia. Review on the LDA-based Techniques Detection for the Field Emerging Topic. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2012.12.11.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2012.12.11
[1] Blei D M. Probabilistic Topic Models[J]. Communications of the ACM, 2012, 55(4): 77-84.
[2] Nigam K, Mccallum A K, Thrun S, et al. Text Classification from Labeled and Unlabeled Documents Using EM[J]. Machine Learning, 2000, 39(2-3): 103-134.
[3] Hofmann T. Probabilistic Latent Semantic Indexing[C]. In: Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’99). New York: ACM, 1999: 50-57.
[4] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[5] Jordan M I, Ghahramani Z, Jaakkola T S, et al. An Introduction to Variational Methods for Graphical Models[J]. Machine learning, 1999, 37(2): 183-233.
[6] Teh Y W, Newman D, Welling M. A Collapsed Variational Bayesian Inference Algorithm for Latent Dirichlet Allocation[C]. In: Proceedings of Neural Information Processing Systems. 2006: 1353-1360.
[7] Griffiths T. Gibbs Sampling in the Generative Model of Latent Dirichlet Allocation[OL]. [2012-06-09].http://people.cs.umass.edu/~wallach/courses/s11/cmpsci791ss/readings/griffiths02gibbs.pdf.
[8] Heinrich G. Parameter Estimation for Text Analysis[EB/OL]. [2012-06-09]. http://www. arbylon. net/publications/text-est. pdf.
[9] Wainwright M J, Jordan M I. Graphical Models, Exponential Families, and Variational Inference[J]. Foundations and Trends in Machine Learning, 2008,1 (1-2): 1-305.
[10] Ghahramani Z, Beal M J. Graphical Models and Variational Methods[A]. //Advanced Mean Field Methods:Theory and Practice[M]. Cambridge: MIT Press, 2001: 167-177.
[11] Blei D M, Lafferty J D. A Correlated Topic Model of Science[J]. Annals of Applied Statistics, 2007, 1(1):17-35.
[12] Aldous D J. Exchangeability and Related Topics[M].Berlin, Heidelberg: Springer, 1985: 1-198.
[13] Li W, Mccallum A. Pachinko Allocation: DAG-structured Mixture Models of Topic Correlations[C]. In: Proceedings of the 23rd International Conference on Machine Learning (ICML’06). New York: ACM, 2006: 577-584.
[14] Wang C, Blei D M. A Split-Merge MCMC Algorithm for the Hierarchical Dirichlet Process[J/OL]. Computing Research Repository. [2012-09-24]. http://arxiv.org/abs/1201.1657.
[15] 曹娟,张勇东,李锦涛,等. 一种基于密度的自适应最优LDA模型选择方法[J]. 计算机学报, 2008, 31(10): 1780-1787. (Cao Juan, Zhang Yongdong, Li Jintao, et al. A Method of Adaptively Selecting Best LDA Model Based on Density[J]. Chinese Journal of Computers, 2008, 31(10): 1780-1787.)
[16] Blei D M, Lafferty J D. Dynamic Topic Models[C]. In: Proceedings of the 23rd International Conference on Machine Learning (ICML’06). New York: ACM, 2006: 113-120.
[17] Wang C, Blei D M, Heckerman D. Continuous Time Dynamic Topic Models[C]. In: Proceedings of Uncertainty in Artificial Intelligence. 2008: 579-586.
[18] Wang X R, McCallum A. Topics Over Time: A Non-Markov Continuous-time Model of Topical Trends[C]. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’06). New York: ACM, 2006: 424-433.
[19] Wallach H M. Topic Modeling: Beyond Bag-of-words[C]. In: Proceedings of the 23rd International Conference on Machine Learning (ICML’06). New York: ACM, 2006: 977-984.
[20] Wang X R, McCallum A, Wei X. Topical N-grams: Phrase and Topic Discovery, with an Application to Information Retrieval[C]. In: Proceedings of the 7th IEEE International Conference on Data Mining (ICDM’07). Washington, DC: IEEE Computer Society, 2007: 697-702.
[21] Wang X R, McCallum A. A Note onTopical N-grams[R]. 2005.
[22] Mann G S, Mimno D, McCallum A. Bibliometric Impact Measures Leveraging Topic Analysis[C]. In: Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL’06). New York: ACM, 2006: 65-74.
[23] Rosen-Zvi M, Griffiths T, Steyvers M, et al. The Author-topic Model for Authors and Documents[C]. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence (UAI’04). Arlington: AUAI Press, 2004: 487-494.
[24] 王萍. 基于概率主题模型的文献知识挖掘[J]. 情报学报, 2011, 30(6): 583-590. (Wang Ping. Literature Knowledge Mining Based on Probabilistic Topic Model[J]. Journal of the China Society for Scientific and Technical Information, 2011, 30(6): 583-590.)
[25] Mimno D, McCallum A. Topic Models Conditioned on Arbitrary Features with Dirichlet-multinomial Regression[C]. In: Proceedings of the 24th Conference in Uncertainty in Artificial Intelligence (UAI’08). 2008: 411-418.
[26] Nallapati R M, Ahmed A, Xing E P, et al. Joint Latent Topic Models for Text and Citations[C]. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’08). New York: ACM, 2008: 542-550.
[27] Tu Y N, Seng J L. Indices of Novelty for Emerging Topic Detection[J]. Information Processing & Management, 2012, 48(2): 303-325.
[28] Goodrum A A, McCain K W, Lawrence S, et al. Scholarly Publishing in the Internet Age: A Citation Analysis of Computer Science Literature[J]. Information Processing & Management, 2001, 37(5): 661-675.
[29] Web of Knowledge [DB/OL]. [2012-08-14]. http://apps.webofknowledge.com.
[30] 中华人民共和国国家知识产权局.专利检索[EB/OL]. [2012-08-14]. http://www.sipo.gov.cn/zljs/. (State Intellectual Property Office of PRC. Patent Retrieval[EB/OL]. [2012-08-14]. http://www.sipo.gov.cn/zljs/.)
[31] Dietz L, Bickel S, Scheffer T. Unsupervised Prediction of Citation Influences[C]. In: Proceedings of the 24th International Conference on Machine Learning (ICML’07). New York: ACM, 2007: 233-240.
[32] He Q, Chen B, Pei J, et al. Detecting Topic Evolution in Scientific Literature: How Can Citations Help[C]. In: Proceedings of the 18th ACM Conference on Information and Knowledge Management (CIKM’09). New York: ACM, 2009: 957-966.
[33] 贺亮, 李芳. 基于话题模型的科技文献话题发现和趋势分析[J]. 中文信息学报, 2012, 26(2): 109-115.(He Liang, Li Fang. Topic Discovery and Trend Analysis in Scientific Literature on Topic Model[J]. Journal of Chinese Information Processing, 2012, 26(2): 109-115.)
[34] Alsumait L, Barbará D, Domeniconi C. On-line LDA: Adaptive Topic Models for Mining Text Streams with Applications to Topic Detection and Tracking[C]. In: Proceedings of the 8th IEEE International Conference on Data Mining. 2008: 3-12.
[35] Hoffman M D, Blei D M, Bach F. Online Learning for Latent Dirichlet Allocation[A]. //Lafferty J,Williams C K I,Shawe-Taylor J,et al. Advances in Neural Information Processing Systems[M].2010: 856-864.
[36] Banerjee A, Basu S. Topic Models over Text Streams: A Study of Batch and Online Unsupervised Learning[C]. In: Proceedings of SDM-SIAM International Conference on Data Mining. 2007.
[37] Herr B W, Talley E M, Burns G, et al. The NIH Visual Browser: An Interactive Visualization of Biomedical Research[C]. In: Proceedings of the 13th International Conference Information Visualization (IV’09). Washington D C: IEEE Computer Society, 2009: 505-509.
[38] Talley E M, Newman D, Mimno D, et al. Database of NIH Grants Using Machine-learned Categories and Graphical Clustering[J]. Nature Methods, 2011, 8(6): 443-444.
[39] Wei F R, Liu S X, Song Y Q, et al. TIARA: A Visual Exploratory Text Analytic System[C]. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’10), Washington DC, USA. New York: ACM, 2010: 153-162.
[40] Boyack K W, Wylie B N, Davidson G S. Domain Visualization Using VxInsight? For Science and Technology Management[J]. Journal of the American Society for Information Science and Technology, 2002, 53 (9): 764-774.
[1] 夏立新,曾杰妍,毕崇武,叶光辉. 基于LDA主题模型的用户兴趣层级演化研究 *[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[2] 曾庆田,胡晓慧,李超. 融合主题词嵌入和网络结构分析的主题关键词提取方法 *[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[3] 关鹏,王曰芬,傅柱. 基于LDA的主题语义演化分析方法研究 * ——以锂离子电池领域为例[J]. 数据分析与知识发现, 2019, 3(7): 61-72.
[4] 余本功,陈杨楠,杨颖. 基于nBD-SVM模型的投诉短文本分类*[J]. 数据分析与知识发现, 2019, 3(5): 77-85.
[5] 席林娜,窦永香. 基于计划行为理论的微博用户转发行为影响因素研究*[J]. 数据分析与知识发现, 2019, 3(2): 13-20.
[6] 张杰,赵君博,翟东升,孙宁宁. 基于主题模型的微藻生物燃料产业链专利技术分析*[J]. 数据分析与知识发现, 2019, 3(2): 52-64.
[7] 刘俊婉,龙志昕,王菲菲. 基于LDA主题模型与链路预测的新兴主题关联机会发现研究*[J]. 数据分析与知识发现, 2019, 3(1): 104-117.
[8] 杨贵军,徐雪,赵富强. 基于XGBoost算法的用户评分预测模型及应用*[J]. 数据分析与知识发现, 2019, 3(1): 118-126.
[9] 何跃,丰月,赵书朋,马玉凤. 基于知乎问答社区的内容推荐研究——以物流话题为例[J]. 数据分析与知识发现, 2018, 2(9): 42-49.
[10] 张涛,马海群. 一种基于LDA主题模型的政策文本聚类方法研究*[J]. 数据分析与知识发现, 2018, 2(9): 59-65.
[11] 徐艳华,苗雨洁,苗琳,吕学强. 基于LDA模型的HSK作文生成*[J]. 数据分析与知识发现, 2018, 2(9): 80-87.
[12] 曾子明,杨倩雯. 基于LDA和AdaBoost多特征组合的微博情感分析*[J]. 数据分析与知识发现, 2018, 2(8): 51-59.
[13] 庞贝贝,苟娟琼,穆文歆. 面向高校学生深度辅导领域的主题建模和主题上下位关系识别研究*[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[14] 俞琰,赵乃瑄. 加权专利文本主题模型研究*[J]. 数据分析与知识发现, 2018, 2(4): 81-89.
[15] 王丽,邹丽雪,刘细文. 基于LDA主题模型的文献关联分析及可视化研究[J]. 数据分析与知识发现, 2018, 2(3): 98-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn