Please wait a minute...
Advanced Search
现代图书情报技术  2012, Vol. Issue (12): 72-78    DOI: 10.11925/infotech.1003-3513.2012.12.13
  应用实践 本期目录 | 过刊浏览 | 高级检索 |
基于本体的个性化图书推荐方法研究
汪英姿
常州大学图书馆 常州 213164
Research on Ontology-based Personalized Recommendation Method for Library Resources
Wang Yingzi
Changzhou University Library, Changzhou 213164, China
全文: PDF(940 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 针对目前图书馆馆藏日渐增多致使用户获取资源负担加重的问题,提出一种混合式图书推荐方法。该方法用语义手段描述图书资源和借阅者,建立用户兴趣与图书资源特征的联系,通过查询修正与基于规则和实例的推理实现个性化推荐,同时在推荐结果中加入辅助推荐。根据用户的反馈信息分析、调整推荐流程,在一定程度上减少传统协同过滤方法的“新用户”和“新对象”问题。实验结果表明,该方法可以提高推荐的命中率,具有良好的效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
汪英姿
关键词 本体混合式推荐个性化推荐用户偏好    
Abstract:The huge increase of library resources makes users’ cost of accessing valuable knowledge becoming much higher. For this problem, the paper proposes a hybrid recommendation method for library resources, which adopts semantic technologies to describe library resources and borrowers, establishes the association between user preferences and library resource features. Through query modification, rule-based and case-based inference, the method realizes personalized recommendation. Meanwhile, some auxiliary recommendation approaches are integrated. The recommendation process can be analyzed and optimized according to users’ feedback. Additionally, this method reduces the “new user” and “new item” problems in traditional collaborative filtering method to a certain extent. Experimental results show that the proposed method can enhance the hit rate.
Key wordsOntology    Hybrid recommendation    Personalized recommendation    User preference
收稿日期: 2012-10-12     
:  TP391  
基金资助:本文系第二批江苏教育改革和发展战略性研究课题重点课题项目“高教园区教育资源共享机制研究”(项目编号:Z/2012/12)的研究成果之一。
通讯作者: 汪英姿     E-mail: wyz@cczu.edu.cn
引用本文:   
汪英姿. 基于本体的个性化图书推荐方法研究[J]. 现代图书情报技术, 2012, (12): 72-78.
Wang Yingzi. Research on Ontology-based Personalized Recommendation Method for Library Resources. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2012.12.13.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2012.12.13
[1] Crespo R G, Martinez O S, Lovelle J M C, et al. Recommendation System Based on User Interaction Data Applied to Intelligent Electronic Books[J]. Computers in Human Behavior, 2011, 27(4): 1445-1449.
[2] Adomavicius G, Tuzhilin A. Towards the Next Generation of Recommender Systems: A Survey of the State-of Art and Possible Extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
[3] 赵继海. 论数字图书馆个性化定制服务[J]. 中国图书馆学报, 2001, 27(3): 63-65.(Zhao Jihai. On Personalized Customization Services of Digital Library[J].Journal of Library Science in China, 2001, 27 (3): 63-65.)
[4] Gruber T R. A Translation Approach to Portable Ontology Specifications[J]. Knowledge Acquisition, 1993, 5(2): 199-220.
[5] Rho S, Song S, Hwang E, et al. COMUS: Ontological and Rule-based Reasoning for Music Recommendation System[C]. In: Proceedings of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD’09). Heidelberg,Berlin: Springer-Verlag,2009: 859-866.
[6] Yang S Y. Developing an Ontology-supported Information Integration and Recommendation System for Scholars[J]. Expert Systems with Applications, 2010, 37(10): 7065-7079.
[7] Chen R C, Huang Y H, Bau C T, et al. A Recommendation System Based on Domain Ontology and SWRL for Anti-diabetic Drugs Selection[J]. Expert Systems with Applications, 2012, 39(4): 3995-4006.
[8] 周若静. 本体的构建及其在图书信息检索中的应用研究[D]. 大连: 大连海事大学, 2009. (Zhou Ruojing. Research and Application on Ontology Modeling and Ontology-based Book Information Retrieval[D]. Dalian: Dalian Maritime University, 2009.)
[9] 牟冬梅. 数字图书馆知识组织语义互联策略及其应用研究[D]. 长春: 吉林大学, 2009.(Mu Dongmei. Study on Semantic Interconnection Strategy and Application on Digital Library Knowledge Organization[D]. Changchun: Jilin University, 2009.)
[10] Yan D W, Cen Y H, Zhang W, et al. Ontology-based Framework for Personalized Recommendation in Digital Libraries[J]. Journal of Southeast University:English Edition, 2006, 22(3): 385-388.
[11] 袁静. 基于本体的数字图书馆个性化服务研究[J]. 图书馆建设, 2009 (1): 66-69.(Yuan Jing. Research on the Personalized Service of the Digital Library Based on Ontology[J]. Library Development, 2009(1):66-69.)
[12] 丁雪, 张玉峰. 基于本体的智能数字图书馆个性化推荐用户本体研究[J]. 现代情报, 2009 (12): 61-65.(Ding Xue, Zhang Yufeng. Research on User Ontology in Personalized Recommendation of Ontology-based Intelligent Digital Library[J]. Journal of Modern Information, 2009 (12):61-65.)
[13] 《中国图书馆分类法》编委会.中国图书馆分类法第五版简表[EB/OL].[2012-09-08].http://clc.nlc.gov.cn/ztfdsb.jsp.(Editorial Board of Chinese Library Classification. The Fifth Edition of Summary Table of Chinese Library Classification[EB/OL].[2012-09-08]. http://clc.nlc.gov.cn/ztfdsb.jsp.)
[14] Smith M K, Welty C, McGuinness D L. OWL Web Ontology Language Guide[EB/OL].[2012-09-10]. http://www.w3.org/TR/owl-guide/.
[15] Prud’hommeaux E, Seaborne A. SPARQL Query Language for RDF[EB/OL].[2012-09-15]. http://www.w3.org/TR/rdf-sparql-query/.
[16] The Apache Software Foundation. What is Jena?[EB/OL].[2012-09-15]. http://jena.apache.org/about_jena/about.html.
[17] Wikipedia. Cosine Similarity[EB/OL].[2012-09-17]. http://en.wikipedia.org/wiki/Cosine_similarity.
[18] Likert R. A Technique for The Measurement of Attitudes[J]. Archives of Psychology, 1932, 22(140): 1-55.
[1] 邓诗琦,洪亮. 面向智能应用的领域本体构建研究*——以反电话诈骗领域为例[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[2] 张怡文,张臣坤,杨安桔,计成睿,岳丽华. 基于条件型游走的四部图推荐方法*[J]. 数据分析与知识发现, 2019, 3(4): 117-125.
[3] 高广尚. 用户画像构建方法研究综述*[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[4] 叶佳鑫,熊回香. 基于标签的跨领域资源个性化推荐研究*[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[5] 王颖,钱力,谢靖,常志军,孔贝贝. 科技大数据知识图谱构建模型与方法研究*[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[6] 何有世,何述芳. 基于领域本体的产品网络口碑信息多层次细粒度情感挖掘*[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[7] 李杰,杨芳,徐晨曦. 考虑时间动态性和序列模式的个性化推荐算法*[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[8] 唐慧慧,王昊,张紫玄,王雪颖. 基于汉字标注的中文历史事件名抽取研究*[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[9] 庞贝贝,苟娟琼,穆文歆. 面向高校学生深度辅导领域的主题建模和主题上下位关系识别研究*[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[10] 丁晟春,刘梦露,傅柱. 概念设计中基于知识流的多维设计知识统一建模技术研究*[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[11] 涂海丽,唐晓波. 基于标签的商品推荐模型研究*[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[12] 侯银秀,李伟卿,王伟军,张婷婷. 基于用户偏好与商品属性情感匹配的图书个性化推荐研究*[J]. 数据分析与知识发现, 2017, 1(8): 9-17.
[13] 陈二静,姜恩波. 文本相似度计算方法研究综述[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[14] 白如江,冷伏海,廖君华. 一种基于语义组块特征的改进Cosine文本相似度计算方法*[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[15] 吴丹,刘畅,李翼. 用户步行导航过程中的情感变化研究*[J]. 数据分析与知识发现, 2017, 1(5): 42-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn