Please wait a minute...
Advanced Search
现代图书情报技术  2013, Vol. 29 Issue (1): 8-14    DOI: 10.11925/infotech.1003-3513.2013.01.02
  数字图书馆 本期目录 | 过刊浏览 | 高级检索 |
利用查询重构识别查询意图
张晓娟, 陆伟
武汉大学信息资源研究中心 武汉 430072
Identifying Query Intent by Exploiting Query Refinement
Zhang Xiaojuan, Lu Wei
Center for Studies of Information Resources, Wuhan University, Wuhan 430072, China
全文: PDF(714 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 基于AOL查询日志数据集,在不给定查询意图类目体系情况下,尝试利用查询重构来识别用户查询意图。主要探讨如何识别出能表达原查询用户意图的查询重构以及如何对识别的查询意图进行聚类两个问题。人工评测结果表明,该方法能够取得较好的实验效果。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晓娟
陆伟
关键词 查询意图查询重构随机游走查询意图聚类    
Abstract:Based on the AOL log dataset, this paper tries to exploit query reformation to identify the concrete query intent of users without given query intent category system. This paper mainly discusses how to identify the query reformation which can express the user intent of original query and how to cluster the query intent. The final results evaluated manually show that this experiment achieves a good effect.
Key wordsQuery intent    Query refinement    Random walk    Query intent clustering
收稿日期: 2012-12-25     
:  G353.4  
基金资助:本文系国家自然科学基金面上项目“基于语言模型的通用实体检索建模及框架实现研究”(项目编号:71173164)和武汉大学2012年博士生自主科研项目“网络检索用户查询意图分析与建模研究”(项目编号:2012104010201)的研究成果之一。
通讯作者: 张晓娟     E-mail: zhangxiaojuan624@gmail.com
引用本文:   
张晓娟, 陆伟. 利用查询重构识别查询意图[J]. 现代图书情报技术, 2013, 29(1): 8-14.
Zhang Xiaojuan, Lu Wei. Identifying Query Intent by Exploiting Query Refinement. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2013.01.02.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2013.01.02
[1] Duan R, Wang X, Hu R, et al. Dependency Relation Based Detection of Lexicalized User Goals[C]. In:Proceedings of the 7th International Conference on Ubiquitous Intelligence and Computing(UIC'10).Berlin, Heidelberg:Springer-Verlag,2010:167-178.
[2] Strohmaier M, Lux M, Granitzer M. How do Users Express Goals on the Web?-An Exploration of Intentional Structures in Web Search[C].In: Proceedings of the 2007 International Conference on Web Information Systems Engineering(WISE'07).Berlin, Heidelberg:Springer-Verlag,2007:67-78.
[3] Gonzalez-Caro C, Calderon-Benavides L, Baeza-Yates R.Web Queries: The Tip of the Iceberg of the User's Intent [C]. In:Proceedings of the 2011 International Conference on Web Search and Web Data Mining.2011.
[4] 陆伟, 周红霞, 张晓娟. 查询意图研究综述[J]. 中国图书馆学报,2013,39(1):100-111.(Lu Wei, Zhou Hongxia, Zhang Xiaojuan. Review of Research on Query Intent[J].Journal of Library Science in China,2013,39(1): 100-111.)
[5] Strohmaier M, Prettenhofer P,Lux M. Different Degrees of Explicitness in Intentional Artifacts: Studying User Goals in a Large Search Query Log[C].In: Proceedings of International Workshop on Commonsense Knowledge and Goal Oriented Interfaces(CSKGOI'08).2008.
[6] Strohmaier M, Kröll M, Körner C.Intentional Query Suggestion: Making User Goals More Explicit During Search[C].In: Proceedings of the 2009 Workshop on Web Search Click Data(WSCD'09). New York, NY, USA:ACM,2009:68-74.
[7] He K Y, Chang Y S, Lu W H. Improving Identification of Latent User Goals Through Search-Result Snippet Classification[C]. In: Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence. Washington, DC, USA:IEEE Computer Society,2007:683-686.
[8] Lee U, Liu Z, Cho J. Automatic Identification of User Goals in Web Search [C]. In: Proceedings of the 14th International Conference on World Wide Web.New York, NY, USA:ACM, 2005: 391-400.
[9] Liu Y Q,Zhang M,Ru L,et al. Automatic Query Type Identification Based on Click Through Information[C].In:Proceedings of Asia Information Retrieval Symposium-AIRS. Berlin,Heidelberg:Springer,2006: 593-600.
[10] Ashkan A, Clarke C L A, Agichtein E,et al. Classifying and Characterizing Query Intent[C]. In:Proceedings of the 31st Annual European Conference on Information Retrieval Research (ECIR'09), Berlin, Heidelberg:Springer-Verlag,2009: 578-586.
[11] Mendoza M, Zamora J. Identifying the Intent of a User Query Using Support Vector Machines[C].In:Proceedings of the 16th International Symposium on String Processing and Information Retrieval(SPIRE'09). Berlin,Heidelberg:Springer, 2009:131-142.
[12] Shi X, Yang C C.Mining Related Queries from Web Search Engine Query Logs Using an Improved Association Rule Mining Model[J]. Journal of the American Society for Information Science and Technology, 2007,58(12):1871-1883.
[13] Jones R, Rey B, Madani O,et al. Generating Query Substitutions[C]. In: Proceedings of the 15th International Conference on World Wide Web.New York, NY, USA:ACM,2006: 387-396.
[14] Wen J R, Nie J Y, Zhang H J. Query Clustering Using User Logs[J].ACM Transactions on Information Systems, 2002,20(1):59-81.
[15] Hosseini M, Abolhassani H. Hierarchical Co-clustering for Web Queries and Selected URLs[C]. In:Proceedings of the 8th International Conference on Web Information Systems Engineering(WISE'07 ).Berlin, Heidelberg:Springer-Verlag,2007:653-662.
[16] Yi J, Maghoul F. Query Clustering Using Click-Through Graph[C].In: Proceedings of the 18th International Conference on World Wide Web.New York, NY, USA:ACM,2009:1055-1056.
[17] Chan W S, Leung W T, Lee D L. Clustering Search Engine Query Log Containing Noisy Clickthroughs[C].In: Proceedings of the 2004 International Symposium on Applications and the Internet.2004:305-308
[18] Baeza-Yates R, Hurtado C, Mendoza M. Improving Search Engines by Query Clustering[J].Journal of the American Society for Information Science and Technology, 2007,58(12):1793-1804.
[19] Huang X, Du Y, Ren Y. Query Clustering Based on User Feed Back[J].Journal of Computational Information Systems, 2011,7(13):4871-4879.
[20] Jarvelin A, Jarvelin K. S-grams: Defining Generalized N-grams for Information Retrieval[J].Information Processing & Management,2007,43(4):1005-1019.
[21] Jones R, Klinkner K L. Beyond the Session Timeout: Automatic Hierarchical Segmentation of Search Topics in Query Logs[C].In: Proceedings of the 17th ACM Conference on Information and Knowledge Management.New York, NY, USA:ACM,2008:699-708.
[22] Sadikov E, Madhavan J, Wang L, et al. Clustering Query Refinements by User Intent[C].In:Proceedings of the 19th International Conference on World Wide Web(WWW'10).New York, NY, USA:ACM,2010:841-850.
[23] AOL[EB/OL].[2012-12-14]. http://www.gregsadetsky.com/aol-data/.
[24] He D Q, Goker A. Detecting Session Boundaries from Web User Logs[C].In:Proceedings of the 22nd Annual Colloquium on Information.2000.
[25] Berry K J, Mielke P W. A Generalization of Cohen's Kappa Agreement Measure to Interval Measurement and Multiple Raters[J]. Educational and Psychological Measurement, 1998,48(4):921-933.
[1] 贺婉莹,杨建林. 基于随机游走模型的排序学习方法*[J]. 数据分析与知识发现, 2017, 1(12): 41-48.
[2] 张晓娟, 韩毅. 时态信息检索研究综述*[J]. 数据分析与知识发现, 2017, 1(1): 3-15.
[3] 任珂,陆伟,丁恒. 查询专指度对检索效果的影响研究[J]. 现代图书情报技术, 2016, 32(11): 34-43.
[4] 原福永, 蔡红蕾. 一种在信任网络中随机游走的推荐算法[J]. 现代图书情报技术, 2014, 30(10): 70-75.
[5] 唐静笑,吕学强,柳成洋,李涵. 用户查询意图的层次化识别方法*[J]. 现代图书情报技术, 2014, 30(1): 36-42.
[6] 俞琰, 邱广华. 融合社会网络的协同过滤推荐算法研究[J]. 现代图书情报技术, 2012, 28(6): 54-59.
[7] 俞琰, 邱广华. 用户兴趣变化感知的重启动随机游走推荐算法研究[J]. 现代图书情报技术, 2012, 28(4): 48-53.
[8] 俞琰, 邱广华. 显式评分的重启动随机游走推荐算法研究[J]. 现代图书情报技术, 2012, 28(3): 8-14.
[9] 周之诚. 基于查询意图聚类的实时搜索建议[J]. 现代图书情报技术, 2011, 27(2): 87-93.
[10] 俞琰, 邱广华, 陈爱萍. 基于混合图的在线社交网络朋友推荐算法[J]. 现代图书情报技术, 2011, (11): 54-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn