Please wait a minute...
Advanced Search
现代图书情报技术  2013, Vol. 29 Issue (1): 22-29    DOI: 10.11925/infotech.1003-3513.2013.01.04
  知识组织与知识管理 本期目录 | 过刊浏览 | 高级检索 |
结合逻辑推理与内容计算实现面向学术网络的智能检索
聂卉
中山大学资讯管理学院 广州 510275
Combining Logical Inference with Content-based Computing for Intelligent Retrieval in Academical Networks
Nie Hui
School of Information Management, Sun Yat-Sen University, Guangzhou 510275, China
全文: PDF(1338 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 本体描述语言OWL-DL的表达能力局限于描述逻辑,因不能挖掘推理实例间的关联而影响本体的实际利用率。针对这一问题,研究基于SWRL的知识库推理机制,SWRL机制通过引入规则推理扩展本体知识库中的语义关联,使隐性知识显性化,推理结果更完善。该框架被用于解决面向学术资源网络的隐含知识发现问题,同时融合内容计算来发掘学术文献间的主题关联。本文提出的方法及策略在原型系统中得以检验,实验证明其合理性、可行性及有效性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
聂卉
关键词 本体推理SWRL智能检索    
Abstract:The expression ability of Ontology description language OWL-DL is restricted in description logic. The actual utilization regarding Ontology is impacted due to the implicated relations among Ontology individuals not being able to be detected. With regard to the issue, the SWRL-based inference mechanism for knowledge base is introduced, by which semantic relations implied in the knowledge base can be identified. Consequently, implicit knowledge is embodied explicitly and more extensive inference results can be available. The mechanism is employed to tackle the problem of implicit knowledge discovery of academic resources on the Web. Furthermore, the topic-specific relations for the academic resources are built on the basis of the content-based similarity measure. All regarding approaches are tested in the prototype indicating reasonability, feasibility and effectiveness of the scheme.
Key wordsOntology inference    SWRL    Intelligent retrieval
收稿日期: 2013-01-09     
:  TH18  
基金资助:本文系2008年度教育部人文社会科学研究项目“基于信息抽取的数字图书馆的知识获取研究”(项目编号:08JC870013)和2009年度中山大学青年教师培育项目“智能化深度搜索引擎实现技术的研究”(项目编号:2000-3161101)的研究成果之一。
通讯作者: 聂卉     E-mail: issnh@mail.sysu.edu.cn
引用本文:   
聂卉. 结合逻辑推理与内容计算实现面向学术网络的智能检索[J]. 现代图书情报技术, 2013, 29(1): 22-29.
Nie Hui. Combining Logical Inference with Content-based Computing for Intelligent Retrieval in Academical Networks. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2013.01.04.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2013.01.04
[1] 田竹. 基于本体和SWRL推理的知识检索方法研究[D]. 成都:电子科技大学, 2011.(Tian Zhu. Knowledge Retrieval Based on Ontology & SWRL Inference[D]. Chengdu: University of Electronic Science and Technology of China, 2011.)
[2] 陈布伟,李冠宇,张俊,等. 基于语义网规则语言的推理机制框架设计[J]. 计算机工程与设计, 2010,31(4):847-849.(Chen Buwei, Li Guanyu, Zhang Jun, et al. Framework Design of SWRL-based Reasoning Mechanism[J]. Computer Engineering and Design, 2010, 31(4):847-849.)
[3] Beimel D, Peleg M. Using OWL and SWRL to Represent and Reason with Situation-based Access Control Policies [J]. Data & Knowledge Engineering, 2011, 70(6):596-615.
[4] Ye Y, Jiang Z B, Diao X D, et al. An Ontology-based Hierarchical Semantic Modeling Approach to Clinical Pathway Workflows[J]. Computers in Biology and Medicine, 2009, 39(8): 722-732.
[5] Yang D, Miao R, Wu H W, et al. Product Configuration Knowledge Modeling Using Ontology Web Language[J]. Expert Systems with Applications, 2009,36(3):4399-4411.
[6] Besana P, Cuggia M, Zekri O, et al. Using Semantic Web Technologies for Clinical Trial Recruitment[C]. In: Proceedings of the 9th International Semantic Web Conference(ISWC'10). Berlin, Heidelberg : Springer-Verlag, 2010: 34-49.
[7] Tao C, Solbrig H R, Sharma D K, et al. Time-oriented Question Answering from Clinical Narratives Using Semantic-Web Techniques[C]. In: Proceedings of the 9th International Semantic Web Conference(ISWC'10). Berlin, Heidelberg : Springer-Verlag, 2010: 241-256.
[8] O'Connor M J, Das A. Semantic Reasoning with XML-based Biomedical Information Models[C]. In:Proceedings of the 13th World Congress on Medical Informatics. 2010: 986-990.
[9] Chi Y L. Rule-based Ontological Knowledge Base for Monitoring Partners Across Supply Networks[J]. Expert Systems with Applications, 2010, 37(2):1400-1407.
[10] Wang X Y, Lv T Y, Wang S S, et al. An Ontology and SWRL Based 3D Model Retrieval System[C]. In: Proceedings of the 4th Asia Information Retrieval Symposium on Information Retrieval Technology(AIRS'08). Berlin, Heidelberg : Springer-Verlag, 2008:335-344.
[11] Cheng G, Du Q Y, Ma H L, et al. The Design and Implementation of Ontology and Rules Based Knowledge Base for Transportation[C]. In: Proceedings of the 2008 International Conference on Computer Science and Software Engineering(CSSE'08). Washington, DC, USA: IEEE Computer Society, 2008:1035-1038.
[12] 张巍. 融合FAQ、本体和推理技术的问答系统研究[D]. 太原:太原理工大学,2011.(Zhang Wei. Research on Question-Answering System Mixed with FAQ, Ontology and Reasoning Technology[D]. Taiyuan: Taiyuan University of Technology, 2011. )
[13] Pérez-Agüera J R, Arroyo J, Greenberg J, et al. Using BM25F for Semantic Search[C]. In: Proceedings of the 3rd International Semantic Search Workshop(SEMSEARCH'10). New York, NY, USA: ACM, 2010.
[1] 刘健,毕强,刘庆旭,王福. 数字文献资源内容服务推荐研究*——基于本体规则推理和语义相似度计算[J]. 现代图书情报技术, 2016, 32(9): 70-77.
[2] 梁艺多, 翟军. 本体推理在关联数据链接发现中的应用研究[J]. 现代图书情报技术, 2015, 31(4): 87-95.
[3] 李红梅, 丁晟春. 面向复杂产品设计的本体推理研究[J]. 现代图书情报技术, 2014, 30(9): 8-14.
[4] 白海燕, 王莉, 梁冰. UMLS及其在智能检索中的应用[J]. 现代图书情报技术, 2012, 28(4): 1-9.
[5] 倪萍, 陆宇宏. 采用C-F模型的中医本体诊断推理与实现[J]. 现代图书情报技术, 2012, 28(4): 22-28.
[6] 丁晟春, 江超男. 基于SWRL规则推理的隐含关系挖掘[J]. 现代图书情报技术, 2011, 27(3): 68-72.
[7] 许德山,乔晓东,朱礼军,姜彩虹,宫丽环. 本体推理在知识检索中的应用*[J]. 现代图书情报技术, 2009, 3(1): 58-63.
[8] 宋琦,薛建武 . 智能检索中基于用户模型的本体映射方法研究[J]. 现代图书情报技术, 2006, 1(9): 29-33.
[9] 赵伟,孙万东 . 基于本体的多Agent智能检索系统模型研究*[J]. 现代图书情报技术, 2006, 1(5): 27-30.
[10] 徐德智,汪智勇,王斌 . 当前主要本体推理工具的比较分析与研究*[J]. 现代图书情报技术, 2006, 1(12): 12-15.
[11] 白海燕,程变爱,毛燕梅,余育仁,荣毅虹,刘清 . 疾病/诊断领域数字资源整合智能检索系统的设计框架*[J]. 现代图书情报技术, 2006, 1(12): 25-28.
[12] 孔敬. 智能检索模型研究[J]. 现代图书情报技术, 2005, 21(3): 37-42.
[13] 傅欣. 第三代搜索引擎的智能化趋势研究[J]. 现代图书情报技术, 2002, 18(6): 28-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn