Please wait a minute...
Advanced Search
现代图书情报技术  2013, Vol. Issue (4): 62-68    DOI: 10.11925/infotech.1003-3513.2013.04.10
  情报分析与研究 本期目录 | 过刊浏览 | 高级检索 |
在线商品评论效用排序模型研究
李志宇
华中师范大学信息管理学院 武汉 430079
Study on the Reviews Effectiveness Sequencing Model of Online Products
Li Zhiyu
School of Information Management, Central China Normal University, Wuhan 430079, China
全文: PDF(842 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 从研究在线评论效用的影响因素入手,建立评论效用指标体系。采用模糊层次分析法确定指标的相对权重,通过语义挖掘对评论内容的各项指标进行量化处理,最后统计每条评论的效用总分。模型应用部分选取国内淘宝商城某商品的近2 000条商品评论信息进行实证分析。研究对比发现,经过排序模型处理后, 大量的无用评论被后置,新排序中靠前的评论内容信息含量非常丰富,评论效用较高,能够有效地辅助其他消费者进行购物决策。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李志宇
关键词 信息挖掘在线评论效用排序    
Abstract:On the basis of studying the influencing factors of online reviews effectiveness, a review effectiveness index system is established. The fuzzy analytic hierarchy process is adopted to determine the relative weight of indexes, various indexes of reviews content are quantized by semantic mining, and the total effectiveness score is calculated for each review. In terms of the model application of this study, nearly 2 000 reviews on a product of China’s Tmall are selected to make an empirical analysis. The study and comparison indicates that, after being processed by the sequencing model, a large number of useless reviews are postponed, and those reviews at the forefront of the new sequence are very rich in information content and high in effectiveness, and can assist consumers in making purchase decisions effectively.
Key wordsInformation mining    Online reviews    Effectiveness sequencing
收稿日期: 2013-03-19     
:  F224  
基金资助:本文系国家大学生创新性实验计划(A类)基金项目“本地化电子商务平台的发展机制及其优化研究”(项目编号:A00750)的研究成果之一。
通讯作者: 李志宇     E-mail: zhiyulee@icloud.com
引用本文:   
李志宇. 在线商品评论效用排序模型研究[J]. 现代图书情报技术, 2013, (4): 62-68.
Li Zhiyu. Study on the Reviews Effectiveness Sequencing Model of Online Products. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2013.04.10.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2013.04.10
[1] Chevalier J A, Mayzlin D. The Effect of Word of Mouth on Sales: Online Book Reviews[J]. Journal of Marketing Research,2006,43(3):345-354.
[2] Ye Q,Zhang Z Q,Law R. Sentiment Classification of Online Reviews to Travel Destinations by Supervised Machine Learning Approaches[J]. Expert Systems with Applications,2009, 36(3): 6527-6535.
[3] 张红斌,李广丽.商品在线评价的情感倾向性分析研究[J]. 现代图书情报技术, 2012(10):61-66.(Zhang Hongbin, Li Guangli. Research on Sentiment Orientation Analysis of Product Online Reviews[J]. New Technology of Library and Information Service, 2012(10):61-66.)
[4] 杨铭,祁巍,闫相斌,等. 在线商品评论的效用分析研究[J]. 管理科学学报,2012, 15(5):65-75.(Yang Ming,Qi Wei,Yan Xiangbin,et al.Utility Analysis for Online Product Review[J].Journal of Management Sciences in China, 2012,15(5):65-75.)
[5] Miao Q L, Li Q D, Dai R W.AMAZING: A Sentiment Mining and Retrieval System[J].Expert Systems with Applications, 2009, 36(3): 7192-7198.
[6] Liu J J,Cao Y B,Lin C Y,et al. Low-quality Product Review Detection in Opinion Summarization[C].In: Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning.Prague: Association Computational Linguistics,2007:334-342.
[7] Zhang Z.Weighing Stars: Aggregating Online Product Reviews for Intelligent E-commerce Applications[J].IEEE Intelligent Systems, 2008, 23(5):42-49.
[8] 郝媛媛,叶强,李一军.基于影评数据的在线评论有用性影响因素研究[J]. 管理科学学报,2010, 13(8):78-96.(Hao Yuanyuan,Ye Qiang,Li Yijun.Research on Online Impact Factors of Customer Reviews Usefulness Based on Movie Reviews Data[J].Journal of Management Sciences in China, 2010, 13(8):78-96.)
[9] 彭岚,周启海,邱江涛.消费者在线评论有用性影响因素模型研究[J]. 计算机科学,2011, 38(8):205-207.(Peng Lan, Zhou Qihai, Qiu Jiangtao. Research on the Model of Helpfulness Factors of Online Customer Reviews[J].Computer Science, 2011,38(8):205-207.)
[10] Lau R Y K,Liao S S Y,Xu K Q.An Empirical Study of Online Consumer Review Spam: A Design Science Approach[C]. In: Proceedings of the 31st International Conference on Information Systems,St.Louis,USA. Accociation of Information Systems,2010.
[11] Sen S,Lerman D.Why Are You Telling Me This? An Examination into Negative Consumer Reviews on the Web[J].Journal of Interactive Marketing, 2007, 21(4):76-94.
[12] Clemons E K, Gao G D, Hitt L M. When Online Reviews Meet Hyperdifferentiation: A Study of the Craft Beer Industry[J].Journal of Management Information Systems, 2006, 23(2):149-171.
[13] Mudambi S M,Schuff D.What Makes a Helpful Online Review? A Study of Customer Reviews on Amazon.com[J].MIS Quarterly, 2010,34(1):185-200.
[14] GooSeeker. MetaSeeker[EB/OL].[2013-03-03].http://www.gooseeker.com/cn/node/product/front.
[15] GooSeeker. Bucket[EB/OL].[2013-03-03].http://www.gooseeker.com/cn/node/document/terms/bucket.
[16] 数据堂. 台湾大学NTUSD-简体中文情感极性词典[EB/OL].[2013-03-05].http://www.datatang.com/data/11837.(Data Tang. National Taiwan University-The Polarity of Simplified Chinese Emotional Dictionary [EB/OL].[2013-03-05].http://www.datatang.com/data/11837.)
[17] Hu M Q, Liu B. Mining Opinion Features in Customer Reviews [C]. In: Proceedings of the 19th National Conference on Artifical Intelligence (AAAI ’2004). Menlo Park: AAAI Press,2004:755-760.
[18] 余传明.从用户评论中挖掘产品属性——基于SOM的实现[J]. 现代图书情报技术,2009(5):61-66. (Yu Chuanming. Mining Product Aspects from User Reviews—An SOM-based Approch[J]. New Technology of Library and Information Service,2009(5):61-66.)
[19] Popescu A M, Etzioni O. Extracting Product Features and Opinions from Reviews [C].In: Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing.Stroudsburg: Association for Computational Linguistics,2005: 339-346.
[20] 张吉军.模糊层次分析法(FAHP)[J]. 模糊系统与数学, 2000, 14(2):80-88.(Zhang Jijun.Fuzzy Analytical Hierarchy Process[J]. Fuzzy Systems and Mathematics, 2000, 14(2):80-88.)
[1] 余本功,张培行,许庆堂. 基于F-BiGRU情感分析的产品选择方法*[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[2] 吴江,刘弯弯. 什么样的评论更容易获得有用性投票*——以亚马逊网站研究为例[J]. 数据分析与知识发现, 2017, 1(9): 16-27.
[3] 李慧,胡云凤. 基于动态情感主题模型的在线评论分析*[J]. 数据分析与知识发现, 2017, 1(9): 74-82.
[4] 张艳丰,李贺,彭丽徽,侯力铁. 基于情感语义特征抽取的在线评论有用性分类算法与应用[J]. 数据分析与知识发现, 2017, 1(12): 74-83.
[5] 杨海霞,吴维芳,孙含林. 基于STM分析旅行者对不同档次酒店的偏好差异[J]. 现代图书情报技术, 2016, 32(9): 51-57.
[6] 张艳丰,李贺,彭丽徽. 基于模糊情感计算的商品在线评论用户品牌转换意向研究*[J]. 现代图书情报技术, 2016, 32(5): 64-71.
[7] 高松,王洪伟,冯罡,王伟. 面向在线评论的比较观点挖掘研究综述*[J]. 现代图书情报技术, 2016, 32(10): 1-12.
[8] 孙霄凌, 赵宇翔, 朱庆华. 在线商品评论系统功能需求的Kano模型分析——以我国主要购物网站为例[J]. 现代图书情报技术, 2013, (6): 76-84.
[9] 张红斌, 李广丽. 商品在线评价的情感倾向性分析研究[J]. 现代图书情报技术, 2012, (10): 61-66.
[10] 欧阳剑. 应用网络信息挖掘技术扩展OPAC[J]. 现代图书情报技术, 2008, 24(11): 76-81.
[11] 蒲筱哥. 基于Web的个性化信息智能挖掘系统的构建[J]. 现代图书情报技术, 2005, 21(4): 27-30.
[12] 孔祥成,石建,苏春萍. 基于因特网信息的挖掘与评价研究[J]. 现代图书情报技术, 2002, 18(4): 51-53.
[13] 沈玮杰. 基于文献结构的自动文摘的初探[J]. 现代图书情报技术, 2002, 18(3): 23-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn