Please wait a minute...
Advanced Search
现代图书情报技术  2013, Vol. Issue (5): 46-53    DOI: 10.11925/infotech.1003-3513.2013.05.06
  知识组织与知识管理 本期目录 | 过刊浏览 | 高级检索 |
一种结合借阅时间特征分析的读者兴趣可视化识别方法
李树青1, 王建强2
1. 南京财经大学信息工程学院 南京 210046;
2. 美国纽约州布法罗大学图书信息研究系 布法罗 14260
A Visualization and Recognition Method of Readers’ Interests with the Analysis of the Characteristics of Borrowing Time
Li Shuqing1, Wang Jianqiang2
1. College of Information Engineering, Nanjing University of Finance & Economics, Nanjing 210046, China;
2. Department of Library and Information Studies, Graduate School of Education, University at Buffalo, The State University of New York, Buffalo 14260, USA
全文: PDF(711 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 利用用户访问中的时间信息可以增强对用户个性化兴趣特征的识别能力。结合图书馆的图书推荐服务,提出利用读者借阅记录中的时间信息来构造读者个性化模式的方法。首先介绍三个基于读者借阅时间特征分析的扩展时间指标,并对读者阅读兴趣程度的识别方法和读者兴趣时序演变趋势可视化设计两方面内容进行详细说明。最后,对相关测试实验及其改进效果进行必要的说明。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李树青
王建强
关键词 个性化时间分析可视化图书推荐服务    
Abstract:The recognition of the characteristics of users’ personalized interests can be enhanced by utilizing of the information in the users’ accessing time. This paper proposes a method of constructing readers’ personalized profiles with the timing information of readers’ borrowing records in book recommendation service of library. This paper begins with the introduction of three extended time indexes based on the analysis of the characteristics of readers’ borrowing time, meantime, it also discusses the recognition of the degree of readers’ interests, and the visualization of timing evolution trend of readers’ interests. Finally, some related experiments that show the performance improvements are reported.
Key wordsPersonalization    Time analysis    Visualization    Book recommendation service
收稿日期: 2013-04-12     
:  G202  
基金资助:本文系江苏省高校自然科学研究面上资助项目“通用加权XML模型在便携式个性化用户兴趣本体中的表达方法研究”(项目编号:11KJB630001)和国家自然科学基金项目“基于通用加权XML模型的个性化用户兴趣本体研究”(项目编号:71103081)的研究成果之一。
通讯作者: 李树青     E-mail: leeshuqing@163.com
引用本文:   
李树青, 王建强. 一种结合借阅时间特征分析的读者兴趣可视化识别方法[J]. 现代图书情报技术, 2013, (5): 46-53.
Li Shuqing, Wang Jianqiang. A Visualization and Recognition Method of Readers’ Interests with the Analysis of the Characteristics of Borrowing Time. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2013.05.06.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2013.05.06
[1] McLaughlin J E.Personalization in Library Databases: Not Persuasive Enough?[J].Library Hi Tech,2011,29(4):605- 622.
[2] Zandian F, Riahinia N, Azimi A, et al. An Evaluation of Alert Services: Quantity Versus Quality[J]. Program: Electronic Library and Information Systems, 2010, 44(1): 5-12.
[3] Lee T Q,Park Y, Park Y T.An Empirical Study on Effectiveness of Temporal Information as Implicit Ratings[J]. Expert Systems with Applications, 2009, 36(2): 1315-1321.
[4] Liu D R, Shih Y Y.Hybrid Approaches to Product Recommendation Based on Customer Life Time and Purchase Preferences[J]. Journal of Systems and Software, 2005, 77(2): 181-191.
[5] Ding Y, Li X, Orlowska M E. Recency-based Collaborative Filtering[C]. In: Proceedings of the 17th Australasian Database Conference. 2006: 99-107.
[6] Yu J, Gong J, Liu F F. Building Search Context with Sliding Window for Information Seeking[C]. In: Proceedings of the 3rd International Conference on Computer Research and Development. 2011: 274-277.
[7] Yu J, Liu F F, Zhao H H. Building User Profile Based on Concept and Relation for Web Personalized Services[C]. In: Proceedings of the International Conference on Innovation and Information Management. 2012:165-172.
[8] Abel F, Gao Q, Houben G J, et al. Analyzing Temporal Dynamics in Twitter Profiles for Personalized Recommendations in the Social Web[C]. In: Proceedings of the 3rd International Conference on Web Science, Koblenz, Germany. 2011: 1-8.
[9] Abraham S, Sojan Lal P, Georgeet D. WEBTRACLUS: A Spatio-Temporal Trajectory Clustering Tool for Personalization in Healthcare Web Portals[C]. In: Proceedings of the 4th International Conference on Pervasive Technologies Related to Assistive Environments(PETRA ’11). New York, NY, USA: ACM, 2011:65-66.
[10] White R W, Bennett P N, Dumais S T. Predicting Short-term Interests Using Activity-based Search Context[C]. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management. 2010: 1009-1018.
[11] Sontag D, Collins-Thompson K, Bennett P N, et al. Probabilistic Models for Personalizing Web Search[C]. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining. 2012: 433-442.
[12] Bennett P N, White R W, Chu W, et al. Modeling the Impact of Short-and Long-term Behavior on Search Personalization[C]. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2012: 185-194.
[13] Yang D, Nie T Z, Shen D R, et al. Personalized Web Search with User Geographic and Temporal Preferences[C]. In: Proceedings of the 13th Asia-Pacific Web Conference on Web Technologies and Applications. 2011: 95-106.
[14] Boughareb D, Farah N. Toward a Web Search Personalization Approach Based on Temporal Context[C]. In: Proceedings of Communications in Computer and Information Science. 2011: 33-44.
[15] Dhanalakshmi D, Kousalya R, Saravanan V. Time Based Web User Personalization and Search[J]. International Journal of Computer Applications, 2012, 46(23): 11-17.
[16] Ho S Y, Bodoff D, Tam K Y. Timing of Adaptive Web Personalization and Its Effects on Online Consumer Behavior[J]. Information Systems Research, 2011,22(3): 660-679.
[17] 胡蓓蓓. 基于知识决策的数字图书馆个性化推荐[J]. 情报学报 , 2007, 26(3): 448-455.(Hu Beibei. Personalized Recommendation in Digital Library Based on Knowledge Decision-making[J].Journal of the China Society for Scientific and Technical Information, 2007,26(3):448-455.)
[18] 景民昌, 于迎辉. 基于借阅时间评分的协同图书推荐模型与应用[J]. 图书情报工作 ,2012,56(3):117-120.(Jing Minchang, Yu Yinghui. CF Recommending Model Based on Borrowing-time Scores and Its Application[J]. Library and Information Service, 2012,56(3): 117-120.)
[19] 马健, 杜泽宇, 李树青, 等.基于多兴趣特征分析的图书馆个性化图书推荐方法[J]. 现代图书情报技术 , 2012(6):1-8. (Ma Jian, Du Zeyu, Li Shuqing. Personalized Book Recommendation Algorithm Based on Multi-interest Analysis in Library[J]. New Technology of Library and Information Service,2012(6): 1-8.)
[20] 张炜, 李斌.基于联机公共查询目录的读者行为挖掘的个性化智能服务系统构建[J]. 情报理论与实践 , 2009,32(10):68-71. (Zhang Wei, Li Bin. Construction of the Individual Intelligent Service System Based on the Mining of Readers’ Behavior in OPAC Database[J]. Information Studies: Theory & Application,2009,32(10):68-71.)
[21] 李克潮, 梁正友. 基于多特征的个性化图书推荐算法[J]. 计算机工程 , 2012,38(11): 34-37.(Li Kechao, Liang Zhengyou. Personalized Book Recommendation Algorithm Based on Multi-feature [J].Computer Engineering,2012,38(11): 34-37.)
[22] 陈春颖, 熊拥军. 基于序列模式挖掘的读者借阅行为分析[J]. 图书情报知识 , 2011(4): 92-96.(Chen Chunying, Xiong Yongjun. The Analysis of Reader Borrow Behavior Based on Sequential Pattern Mining[J]. Document, Information & Knowledge, 2011(4): 92-96.)
[1] 杨海慈,王军. 宋代学术师承知识图谱的构建与可视化[J]. 数据分析与知识发现, 2019, 3(6): 109-116.
[2] 杨亚楠,赵文辉,张健,谭珅,张贝贝. 基于多视图协同的政策文本可视化研究*[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[3] 张怡文,张臣坤,杨安桔,计成睿,岳丽华. 基于条件型游走的四部图推荐方法*[J]. 数据分析与知识发现, 2019, 3(4): 117-125.
[4] 吴江,刘冠君,胡仙. 在线医疗健康研究的系统综述: 研究热点、主题演化和研究方法*[J]. 数据分析与知识发现, 2019, 3(4): 2-12.
[5] 吴志强,祝忠明,刘巍,王思丽. CSpace知识分析与可视化功能扩展研究与实践*[J]. 数据分析与知识发现, 2019, 3(3): 112-119.
[6] 叶佳鑫,熊回香. 基于标签的跨领域资源个性化推荐研究*[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[7] 陈挺,李国鹏,王小梅. 基于t-SNE降维的科学基金资助项目可视化方法研究*[J]. 数据分析与知识发现, 2018, 2(8): 1-9.
[8] 李杰,杨芳,徐晨曦. 考虑时间动态性和序列模式的个性化推荐算法*[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[9] 杨斯楠,徐健,叶萍萍. 网络评论情感可视化技术方法及工具研究*[J]. 数据分析与知识发现, 2018, 2(5): 77-87.
[10] 王丽,邹丽雪,刘细文. 基于LDA主题模型的文献关联分析及可视化研究[J]. 数据分析与知识发现, 2018, 2(3): 98-106.
[11] 侯银秀,李伟卿,王伟军,张婷婷. 基于用户偏好与商品属性情感匹配的图书个性化推荐研究*[J]. 数据分析与知识发现, 2017, 1(8): 9-17.
[12] 陈梅梅,薛康杰. 基于标签簇多构面信任关系的个性化推荐算法研究*[J]. 数据分析与知识发现, 2017, 1(5): 94-101.
[13] 陈梅梅, 薛康杰. 基于改进张量分解模型的个性化推荐算法研究*[J]. 数据分析与知识发现, 2017, 1(3): 38-45.
[14] 谢秀芳,张晓林. 针对科技路线图的文本挖掘研究: 集成分析及可视化*[J]. 数据分析与知识发现, 2017, 1(1): 16-25.
[15] 罗文馨,陈翀,邓思艺. 基于Word2Vec及大众健康信息源的疾病关联探测[J]. 现代图书情报技术, 2016, 32(9): 78-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn