Please wait a minute...
Advanced Search
现代图书情报技术  2013, Vol. 29 Issue (9): 74-81    DOI: 10.11925/infotech.1003-3513.2013.09.12
  情报分析与研究 本期目录 | 过刊浏览 | 高级检索 |
融入社会关系的微博排名策略研究
唐晓波, 房小可
武汉大学信息管理学院 武汉 430072
Research on Microblog Ranking Strategy with the Social Relations
Tang Xiaobo, Fang Xiaoke
School of Information Management, Wuhan University, Wuhan 430072, China
全文: PDF(837 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 社会化媒体的出现,使得搜索环境发生重大变化。针对当前微博搜索排名的不足,在分析微博社会关系的基础上,综合可测量的参数指标,提出融入社会关系的微博排名策略,即在传统的PageRank排名算法中增加社会强度,综合考虑用户知名度、信息知名度、信息质量、时间因素等其他参数指标。实验结果显示,取各参数指标的平均值(AVG)能获得排名精度最高的效果,优于微博传统排名算法并且能获得更多社会关系。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐晓波
房小可
关键词 社会关系微博PageRank排名    
Abstract:The emergence of social media makes the environment of retrieving changed. Since the shortcomings of retrieving ranking in microblog, this paper analyzes the microblogging social network relationship, and proposes microblogging ranking strategy with the social relations. That means, social strength is added to the traditional PageRank ranking algorithm, and some related indicators including people popularity, information popularity, information quality, the time factor and some others are considered. The experimental results show that AVG has a higher accuracy, and it can obtain more social relationships compared with conventional ranking algorithm.
Key wordsSocial relations    Microblogging    PageRank    Ranking
收稿日期: 2013-06-03     
: 

G354

 
基金资助:

本文系国家自然科学基金项目“社会化媒体集成检索与语义分析方法研究”(项目编号:71273194)和武汉大学2013年研究生自主科研项目“社会化媒体检索策略研究”(项目编号:2013104010206)的研究成果之一。

通讯作者: 房小可     E-mail: fangxiaoke1987218@163.com
引用本文:   
唐晓波, 房小可. 融入社会关系的微博排名策略研究[J]. 现代图书情报技术, 2013, 29(9): 74-81.
Tang Xiaobo, Fang Xiaoke. Research on Microblog Ranking Strategy with the Social Relations. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2013.09.12.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2013.09.12
[1] Java A, Song X, Finin T, et al. Why We Twitter: Understanding Micoblogging Usage and Communities[C]. In: Proceedings of the 9th WEBKDD and 1st SNA-KDD 2007 Workshop on Web Mining and Social Network Analysis, San Jose, California, USA. New York: ACM, 2007:56-65.
[2] Khonsari K K, Nayeri Z A, Fathalian A, et al. Social Network Analysis of Iran’s Green Movement Opposition Groups Using Twitter[C].In: Proceedings of 2010 International Conference on Advances in Social Networks Analysis and Mining. 2010:414-415.
[3] Song J, Lee S, Kim J, et al. Spam Filtering in Twitter Using Sender-Receiver Relationship[C]. In: Proceedings of the 14th International Conference on Recent Advances in Intrusion Detection (RAID’11). Berlin,Heidelberg: Springer-Verlag,2011:301-317.
[4] Dong A, Zhang R, Kolari P, et al. Time is of the Essence: Improving Recency Ranking Using Twitter Data[C]. In: Proceedings of the 19th International Conference on World Wide Web (WWW’10). New York: ACM, 2010:331-340.
[5] Morris M R, Jaime T, Panovich K. A Comparison of Information Seeking Using Search Engines and Social Networks[C]. In: Proceedings of the 4th International AAAI Conference on Weblogs and Social Media. 2010:291-294.
[6] Shuai X, Liu X, Bollen J. Improving News Ranking by Community Tweets[C].In: Proceedings of the 21st International Conference Companion on World Wide Web (WWW’12), Lyon, France. New York: ACM, 2012:1227-1232.
[7] Salton G, Wong A, Yang C S. A Vector Space Model for Automatic Indexing[J]. Communications of the ACM, 1975, 18(11):613-620.
[8] Lv Y, Zhai C. Positional Language Model for Information Retrieval[C]. In: Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’09). New York: ACM, 2009: 299-306.
[9] Weng J, Lim E P, Jiang J, et al. TwitterRank: Finding Topic-sensitive Influential Twitters[C]. In: Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. 2010: 261-270.
[10] Yamaguchi Y, Takahashi T, Amagasa T, et al. TURank: Twitter User Ranking Based on User-Tweet Graph Analysis[C]. In: Proceedings of Web Information Systems Engineering (WISE 2010). Berlin,Heidelberg: Spring-Verlag, 2010:240-253.
[11] Gupta A, Kumaraguru P. Credibility Ranking of Tweets During High Impact Events[C]. In: Proceedings of the 1st Workshop on Privacy and Security in Online Social Media (PSOSM’12). New York: ACM, 2012.
[12] Ravikumar S, Balakrishnan R, Kambhampati S. Ranking Tweets Considering Trust and Relevance[C]. In: Proceedings of the 9th International Workshop on Information Integration on the Web (IIWeb’12). New York: ACM, 2012.
[13] Vosecky J, Leung K W, Ng W. Searching for Quality Microblog Posts: Filtering and Ranking Based on Content Analysis and Implicit Links[C]. In: Proceedings of the 17th International Conference on Database Systems for Advanced Applications (DASFAA’12). Berlin,Heidelberg: Spring-Verlag,2012:397-413.
[14] Chang Y, Dong A, Kolari P, et al. Improving Recency Ranking Using Twitter Data[J]. ACM Transactions on Intelligent Systems and Technology, 2013,4(1):4-24.
[15] 梁秋实,吴一雷,封磊. 基于MapReduce的微博用户搜索排名算法[J]. 计算机应用,2012,32(11):2989-2993.(Liang Qiushi, Wu Yilei, Feng Lei. User Ranking Algorithm for Microblog Search Based on MapReduce[J]. Journal of Computer Applications, 2012,32(11):2989-2993.)
[16] 王璞,董军. 基于时间技术的搜索引擎排名算法[J]. 硅谷, 2012(21): 13-14.(Wang Pu, Dong Jun. Search Engine Ranking Algorithm Based on Time Technology[J]. Silicon, 2012(21):13-14.)
[17] Abdullah I B. Incremental PageRank for Twitter Data Using Hadoop[D]. Edinburgh: University of Edinburgh, 2010.
[18] Kandiah V, Shepelyansky D L. PageRank Model of Opinion Formation on Social Networks[J]. Physica A: Statistical Mechanics and Its Applications, 2012, 391(22):5779-5793.
[19] Cheng F, Zhang X, He B, et al. A Survey of Learning to Rank for Real-Time Twitter Search[C]. In: Proceedings of the 2012 International Conference on Pervasive Computing and the Networked World (ICPCA/SWS’12). Berlin,Heidelberg: Spring-Verlag,2013:150-164.
[20] Barabasi A L, Albert R. Emergence of Scaling in Random Networks[J].Science,1999,286(5439):509-512.
[21] Kim H J, Kim J M. Cyclic Topology in Complex Network[J].Physical Review E, 2005, 72(3): 036109.
[22] Shen Y, Li S, Ye X, et al. Content Mining and Network Analysis of Microblog Spam[J]. Journal of Convergence Information Technology,2010,5(1):135-140.
[23] Brin S, Page L. The Anatomy of a Large-scale Hypertextual Web Search Engine[J]. Computer Networks and ISDN System, 1998,30(1-7):107-117.
[24] Page L, Brin S, Motwani R, et al. The PageRank Citation Ranking: Bringing Order to the Web[EB/OL]. [2013-05-02]. http://ilpubs.stanford.edu:8090/422/.
[25] 俞淮,郑倩冰,毛羽刚,等. 基于局部中心度的在线论坛意见领袖发现算法[J]. 计算机技术与发展,2012,22(4):9-11.(Yu Huai, Zheng Qianbing, Mao Yugang, et al. An Algorithm for Online Forum Opinion Leaders Discovery Based on Local Centrality[J]. Computer Technology and Development, 2012,22 (4):9-11.)
[26] 王丹.基于网络论坛的舆论领袖发现技术研究[D].哈尔滨:哈尔滨工业大学,2011.(Wang Dan. Research of Opinion Leader Discovery Technology in BBS[D].Harbin: Harbin Institute of Technology,2011.)
[27] 第一季新浪微博用户量[EB/OL].(2011-06-29).[2013-01-26].http://www.news.sina.com.cn. (The Number of Microblogging Users at Sina in the First Quarter [EB/OL].(2011-06-29).[2013-01-26].http://www.news.sina.com.cn.)
[28] 杨冠超. 微博客热点话题发现策略研究[D]. 杭州:浙江大学,2011.(Yang Guanchao. Research of Hot Topic Discovery Strategy on Microblogging Platforms[D]. Hangzhou: Zhejiang University, 2011.)
[29] Magnani M, Montesi D, Rossi L. Conversation Retrieval for Microblogging Sites[J]. Information Retrieval, 2012, 15(3-4):354-372.
[1] 程齐凯,王佳敏,陆伟. 基于引用共词网络的领域基础词汇发现研究*[J]. 数据分析与知识发现, 2019, 3(6): 57-65.
[2] 安璐,梁艳平. 突发公共卫生事件微博话题与用户行为选择研究*[J]. 数据分析与知识发现, 2019, 3(4): 33-41.
[3] 赵明清,武圣强. 基于微博情感分析的股市加权预测方法研究*[J]. 数据分析与知识发现, 2019, 3(2): 43-51.
[4] 曾子明,杨倩雯. 基于LDA和AdaBoost多特征组合的微博情感分析*[J]. 数据分析与知识发现, 2018, 2(8): 51-59.
[5] 郭崇慧,李敏谦. 基于排名聚合的古村落网络信息资源评价研究*[J]. 数据分析与知识发现, 2018, 2(4): 10-19.
[6] 刘俊婉,杨波,王菲菲. 基于引证行为与学术相似度的学者影响力领域排名方法研究*[J]. 数据分析与知识发现, 2018, 2(4): 59-70.
[7] 高永兵,杨贵朋,张娣,马占飞. 基于突显词博文聚类的官微事件检测方法*[J]. 数据分析与知识发现, 2017, 1(9): 57-64.
[8] 何跃,朱灿. 基于微博的意见领袖网情感特征分析*——以“非法疫苗”事件为例[J]. 数据分析与知识发现, 2017, 1(9): 65-73.
[9] 陈晓威,史昱天. 社会网络中关键节点的识别——基于符号网络的PageRank算法改进[J]. 数据分析与知识发现, 2017, 1(8): 68-75.
[10] 敦欣卉,张云秋,杨铠西. 基于微博的细粒度情感分析[J]. 数据分析与知识发现, 2017, 1(7): 61-72.
[11] 祁瑞华. 基于依存关系的中文微博作者性别识别*[J]. 数据分析与知识发现, 2017, 1(2): 58-63.
[12] 杨爽,陈芬. 基于SVM多特征融合的微博情感多级分类研究*[J]. 数据分析与知识发现, 2017, 1(2): 73-79.
[13] 叶光辉, 夏立新. 专家检索与专家排名研究评述*[J]. 数据分析与知识发现, 2017, 1(2): 1-10.
[14] 刘通,杨敬成. 基于信号传播算法的在线医疗咨询反馈内容评估方法*[J]. 数据分析与知识发现, 2017, 1(11): 29-36.
[15] 丁晟春,龚思兰,李红梅. 基于突发主题词和凝聚式层次聚类的微博突发事件检测研究*[J]. 现代图书情报技术, 2016, 32(7-8): 12-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn