Please wait a minute...
Advanced Search
现代图书情报技术  2014, Vol. 30 Issue (2): 32-40    DOI: 10.11925/infotech.1003-3513.2014.02.05
  知识组织与知识管理 本期目录 | 过刊浏览 | 高级检索 |
Web导航模型综述——信息觅食理论视角
柯青, 王秀峰
南京大学信息管理学院 南京 210093
A Review on Web Navigation Model:Information Foraging Theory Perspective
Ke Qing, Wang Xiufeng
Information Management School, Nanjing University, Nanjing 210093, China
全文: PDF(634 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

[目的] 旨在分析基于信息觅食理论构建的Web导航模型的特征。[方法] 在对比动物觅食行为与Web导航行为相似性的基础上,探究基于信息觅食理论的Web导航模型的理论基础,分析以SNIF-ACT系列模型为代表的Web导航模型的主要运作机制。[结果] 发现基于信息觅食理论的Web导航模型描述的是用户的认知特征及有限理性假设和次最优决策行为,此类模型具有量化计算用户导航行为的优点。[结论] 提出基于信息觅食理论构建Web导航模型的改进思路,促进此系列模型能更好地应用于解释和预测用户Web导航行为。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柯青
王秀峰
关键词 信息觅食Web导航模型述评    
Abstract

[Objective] This paper aims to analyze the Web navigation models based on information foraging theory. [Method] The paper compares the similarities of the foraging behavior of animals and navigation behavior of users, investigates the theory foundations of Web navigation models based on information foraging theory and analyzes the operating mechanism of SNIF-ACT series models. [Results] The Web navigation models based on information foraging theory describe users' cognitive characteristics under limited rational hypothesis and suboptimal decision situations. [Conclusion] The paper provides some suggestions so as to improve the application of these models in explaining and predicting users' Web navigation behavior.

Key wordsInformation foraging    Web navigation    Model    Review
收稿日期: 2013-07-19     
:  G203  
基金资助:

本文系国家社会科学基金青年项目“基于用户认知差异的检索系统人机交互过程及界面评估”(项目编号:11CTQ037)和教育部人文社会科学规划基金项目“中文网站站内导航链接优化策略”(项目编号:10YJC870020)的研究成果之一。

通讯作者: 柯青 E-mail:keqing@nju.edu.cn     E-mail: keqing@nju.edu.cn
作者简介: 作者贡献声明:柯青:提出论文架构,设计研究思路;王秀峰:文献收集;柯青,王秀峰:论文起草和最终版本修订。
引用本文:   
柯青, 王秀峰. Web导航模型综述——信息觅食理论视角[J]. 现代图书情报技术, 2014, 30(2): 32-40.
Ke Qing, Wang Xiufeng. A Review on Web Navigation Model:Information Foraging Theory Perspective. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2014.02.05.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2014.02.05

[1] Miller C S, Remington R W. Modeling Information Navigation: Implications for Information Architecture[J]. Human-Computer Interaction, 2004, 19(3): 225-271.
[2] Pirolli P, Card S K. Information Foraging[J]. Psychological Review, 1999, 106 (4): 643-675.
[3] Jul S, Furnas G W. Navigation in Electronic Worlds: A CHI 97 Workshop[EB/OL].[2011-09-01]. http://homepages.cwi.nl/~steven/sigchi/bulletin/1997.4/jul. html.
[4] Pirolli P, Fu W. SNIF-ACT: A Model of Information Foraging on the World Wide Web[C]. In: Proceedings of the 9th International Conference on User Modeling (UM'03). Heidelberg: Springer-Verlag, 2003: 45-54.
[5] Fu W, Pirolli P. SNIF-ACT: A Cognitive Model of User Navigation on the World Wide Web[J]. Human-Computer Interaction, 2007, 22 (4): 355-412.
[6] 郝伯特.A.西蒙. 管理行为[M]. 詹正茂译. 原书第4版. 北京: 机械工业出版社, 2007: 15. (Simon H A. Administrative Behavior: A Study of Decision-Making Processes in Administrative Organizations[M]. Translated by Zhan Zhengmao. The 4th Edition. Beijing: China Machine Press, 2007: 15.)
[7] Anderson J R. The Adaptive Character of Thought[M]. Psychology Press, 1990.
[8] Oaksford M, Chater N. Rational Explanation of the Selection Task[J]. Psychological Review, 1996, 103 (2): 381-391.
[9] Fu W, Gray W D. Suboptimal Tradeoffs in Information Seeking[J]. Cognitive Psychology, 2006, 52 (3): 195-242.
[10] Annan K. If Information and Knowledge are Central to Democracy, They are Conditions for Development[EB/OL].[2013-11-14]. http://www.un.org/News/Press/docs/1997/1997 0623. sgsm6268.html.
[11] Pirolli P. Information Foraging Theory: Adaptive Interaction with Information[M]. New York: Oxford University Press, 2007: 89-109.
[12] Anderson J R, Lebiere C J. The Atomic Components of Thought[M]. Hillsdale, NJ: Lawrence Erlbaum Associates, 1998.
[13] Rumelhart D E, McClelland J L. Interactive Processing Through Spreading Activation[A].//Perfetti C A, Lesgold A M. Interactive Processes in Reading[M]. Hillsdale, NJ: Lawrence Erlbaum Associates, 1981.
[14] Joachims T, Granka L, Pang B, et al. Accurately Interpreting Clickthrough Data as Implicit Feedback[C]. In: Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR'05). New York: ACM, 2005: 154-161.
[15] Chi E H, Pirolli P, Chen K, et al. Using Information Scent to Model User Information Needs and Actions on the Web[C]. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI'01), Seattle, WA, USA. New York: ACM, 2001: 490-497.
[16] van Oostendorp H, Karanam S, Indurkhya B. CoLiDeS+Pic: A Cognitive Model of Web-navigation Based on Semantic Information from Pictures[J]. Behaviour & Information Technology, 2012, 31(1): 17-30.
[17] 杨阳, 张新民. 信息觅食理论的研究进展[J]. 现代图书情报技术, 2009(1): 73-79. (Yang Yang, Zhang Xinmin. Advance in Information Foraging Theory[J]. New Technology of Library and Information Service, 2009(1): 73-79.
[18] Kitajima M, Toyota M. Simulating Navigation Behaviour Based on the Architecture Model Human Processor with Real-Time(MHP/RT)[J]. Behaviour & Information Techn-ology, 2012, 31(1): 41-58.
[19] Nielsen J. Designing Web Usability[M]. Indianapolis: New Riders, 2000.
[20] Chi E H, Rosien A, Suppattanasiri G, et al. The Bloodhound Project: Automating Discovery of Web Usability Issues Using the InfoScent Simulator[C]. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI'03). New York: ACM, 2003: 505-512.
[21] Katsanos C, Tselios N, Avouris N. Evaluating Website Navigability: Validation of a Tool-based Approach Through Two Eye-tracking User Studies[J]. The New Review of Hypermedia and Multimedia, 2010, 16 (1-2): 195-214.
[22] Blackmon M H, Kitajima M, Polson P G. Tool for Accurately Predicting Website Navigation Problems, Non-problems, Problem Severity, and Effectiveness of Repairs[C]. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI'05), Portland, Oregon, USA. New York: ACM, 2005: 31-40.
[23] Budiu R, Pirolli P L. Modeling Navigation in Degree of Interest Trees[C]. In: Proceedings of the 29th Annual Conference of the Cognitive Science Society, Nashville, TN, USA. 2007: 845-850.
[24] Blackmon M H. Information Scent Determines Attention Allocation and Link Selection Among Multiple Information Patches on a Webpage[J]. Behaviour & Information Techno-logy, 2012, 31(1): 3-15.

[1] 曾庆田,胡晓慧,李超. 融合主题词嵌入和网络结构分析的主题关键词提取方法 *[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[2] 董晓舟,陈信康. 电子折扣券弹性与经济效益的关系研究 ——一个基于电商平台大数据的混合模型[J]. 数据分析与知识发现, 2019, 3(6): 42-49.
[3] 陈万成,戴浩然,金映含. 基于数据挖掘方法的HEDONIC房屋价格评估模型——以美国城市西雅图为例[J]. 数据分析与知识发现, 2019, 3(5): 19-26.
[4] 刘强,陈云伟,张志强. 用于科技评价的挪威模型方法与应用综述*[J]. 数据分析与知识发现, 2019, 3(5): 41-50.
[5] 余本功,陈杨楠,杨颖. 基于nBD-SVM模型的投诉短文本分类*[J]. 数据分析与知识发现, 2019, 3(5): 77-85.
[6] 吴小兰,章成志. 学术社交媒体视角下学科知识流动规律研究*——以科学网为例[J]. 数据分析与知识发现, 2019, 3(4): 107-116.
[7] 安璐,梁艳平. 突发公共卫生事件微博话题与用户行为选择研究*[J]. 数据分析与知识发现, 2019, 3(4): 33-41.
[8] 彭昱欣,邓朝华,吴江. 基于社会资本与动机理论的在线健康社区医学专业用户知识共享行为分析*[J]. 数据分析与知识发现, 2019, 3(4): 63-70.
[9] 牟冬梅,法慧,王萍,孙晶. 基于结构方程模型的疾病危险因素研究*[J]. 数据分析与知识发现, 2019, 3(4): 80-89.
[10] 温廷新,李洋子,孙静霜. 基于多因素特征选择与AFOA/K-means的新闻热点发现方法*[J]. 数据分析与知识发现, 2019, 3(4): 97-106.
[11] 李旭晖,刘洋. 时空数据建模方法研究综述*[J]. 数据分析与知识发现, 2019, 3(3): 1-13.
[12] 刘志强,都云程,施水才. 基于改进的隐马尔科夫模型的网页新闻关键信息抽取*[J]. 数据分析与知识发现, 2019, 3(3): 120-128.
[13] 张佩瑶,刘东苏. 基于词向量和BTM的短文本话题演化分析*[J]. 数据分析与知识发现, 2019, 3(3): 95-101.
[14] 薛翔,赵宇翔. 音乐平台中音乐分类体系的用户心智模型研究*——以高校学生群体为例[J]. 数据分析与知识发现, 2019, 3(2): 1-12.
[15] 李健,王明月,许路明,田英春. 基于用户感知价值的医疗信息服务评价体系构建*[J]. 数据分析与知识发现, 2019, 3(2): 118-126.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn