Please wait a minute...
Advanced Search
现代图书情报技术  2014, Vol. 30 Issue (4): 34-40    DOI: 10.11925/infotech.1003-3513.2014.04.06
  知识组织与知识管理 本期目录 | 过刊浏览 | 高级检索 |
面向用户任务的查询推荐研究
张晓娟, 唐祥彬
武汉大学信息资源研究中心 武汉 430072
Query Recommendation Based on User Task
Zhang Xiaojuan, Tang Xiangbin
Center for the Studies of Information Resources, Wuhan University, Wuhan 430072, China
全文: PDF(468 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

[目的] 基于AOL查询日志数据集,从Session级别实现面向用户任务的查询推荐。[方法] 从用户任务级别衡量查询间关系,再通过随机游走遍历图的思想为查询构建向量,以此实现候选查询推荐。[结果] 本文方法的推荐效果优于基于查询共现来衡量查询间关系的推荐效果。[局限] 未对拼写错误的候选查询进行拼写纠错;未从查询级别来实现面向用户任务的查询推荐;稀有查询和模糊性查询的推荐效果不佳。[结论] 基于用户任务来衡量查询之间相关关系,能提高查询推荐的实验效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
唐祥彬
张晓娟
关键词 查询推荐用户任务查询日志    
Abstract

[Objective] This paper tries to realize user task-oriented query suggestion from session level based on AOL query log dataset. [Methods] This paper firstly measures the relationship between queries based on user task, and then realizes user task-oriented query recommendation by exploiting random walk to traversal graph model. [Results] The final results show that our query recommendation method outperforms that method which measures relationship between queries by exploiting queries occurrence information. [Limitations] Misspelled candidate queries are not implemented spell correction; Query recommendation are not realized from query level; The recommendation effect of rare queries and ambiguous queries are not good. [Conclusions] Measuring the relationship between queries based on user task can improve the performance of query recommendation.

Key wordsQuery recommendation    User task    Query log
收稿日期: 2013-12-17     
:  G353.4  
基金资助:

本文系武汉大学2012年博士生自主科研项目“网络检索用户查询意图分析与建模研究”(项目编号:2012104010201)的研究成果之一。

通讯作者: 张晓娟 E-mail:zhangxiaojuan624@gmail.com     E-mail: zhangxiaojuan624@gmail.com
作者简介: 作者贡献声明:张晓娟:研究命题的提出﹑实验设计以及论文撰写;唐祥彬:数据处理与分析。
引用本文:   
张晓娟, 唐祥彬. 面向用户任务的查询推荐研究[J]. 现代图书情报技术, 2014, 30(4): 34-40.
Zhang Xiaojuan, Tang Xiangbin. Query Recommendation Based on User Task. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2014.04.06.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2014.04.06

[1] Huang C K,Chien L F,Oyang Y J.Relevant Term Suggestion in Interactive Web Search Based on Contextual Information in Query Session Logs[J].Journal of the American Society for Information Science and Technology,2003,54(7):638-649.
[2] Shi X,Yang C C.Mining Related Queries from Web Search Engine Query Logs Using an Improved Association Rule Mining Model[J].Journal of the American Society for Information Science and Technology,2007,58(12):1871-1883.
[3] Fonseca B M,Golgher P B,de Moura E S,et al.Using Association Rules to Discover Search Engines Related Queries[C].In:Proceedings of the 1st Conference on Latin American Web Congress,2003.
[4] Jones R,Rey B,Madani O,et al.Generating Query Substitutions[C].In:Proceedings of the 15th International Conference on World Wide Web.2006:387-396.
[5] Mei Q,Zhou D,Church K.Query Suggestion Using Hitting Time[C].In:Proceedings of the 17th ACM Conference on Information and Knowledge Management.2008:469-478.
[6] Boldi P,Bonchi F,Castillo C,et al.The Query-flow Graph:Model and Applications[C].In:Proceedings of the 17th ACM Conference on Information and Knowledge Management.2008:609-618.
[7] Song Y,He L.Optimal Rare Query Suggestion with Implicit User Feedback[C].In:Proceedings of the 19th International Conference on World Wide Web.2010:901-910.
[8] Song Y,Zhou D,He L.Query Suggestion by Constructing Term-Transition Graphs[C].In:Proceedings of the 5th ACM International Conference on Web Search and Data Mining.2012:353-362.
[9] 李亚楠,许晟,王斌.基于加权SimRank的中文查询推荐研究[J].中文信息学报,2010,24(3):3-10.(Li Ya'nan,Xu Sheng,Wang Bin.Chinese Query Recommendation by Weighted SimRank[J].Journal of Chinese Information Processing,2010,24(3):3-10.)
[10] Cao H H,Jiang D X,Pei J,et al.Context-aware Query Suggestion by Mining Click-through and Session Data[C].In:Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'08).2008:875-883.
[11] Cao H H,Jiang D X,Pei J,et al.Towards Context-aware Search by Learning a Very Large Variable Length Hidden Markov Model from Search Logs[C].In:Proceedings of the 18th International Conference on World Wide Web (WWW'09).2009:191-200.
[12] Catledge L,Pitkow J.Characterizing Browsing Behaviors on the World Wide Web[J].Computer Networks and ISDN System,1995,27(6):1065-1073.
[13] He D Q,Goker A.Detecting Session Boundaries from Web User Logs[C].In:Proceedings of the 22nd Annual Colloquium on Information.2000.
[14] Jansen B,Spink A,Kathuria V.Define Searching Sessions on Web Search Engines[J].Journal of the American Society for Information Science and Technology,2007,58(6):862-871.
[15] Jones R,Klinkner K L.Beyond the Session Timeout:Automatic Hierarchical Segmentation of Search Topics in Query Logs[C].In:Proceedings of the 17th ACM Conference on Information and Knowledge Management.2008.
[16] Lucchese C,Orlando S,Perego R,et al.Identifying Task-based Sessions in Search Engine Query Logs[C].In:Proceedings of the 4th ACM International Conference on Web Search and Data Mining.2011:277-286.
[17] Liao Z,Song Y,He L W,et al.Evaluating the Effectiveness of Search Task Trails[C].In:Proceedings of the 21st International Conference on World Wide Web(WWW'12).2012:489-498.
[18] The ClueWeb09 Dataset[EB/OL].[2013-10-14].http://lemur­p­roject.org/clueweb09/.
[19] Deng H B,King I,Lyu M R.Entropy-biased Models for Query Representation on the Click Graph[C].In:Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2009:339-346.
[20] Chan W S,Leung W T,Lee D L.Clustering Search Engine Query Log Containing Noisy Clickthroughs[C].In:Proceedings of the 2004 International Symposium on Applications and the Internet.2004:305-308.
[21] AOL Search Data[EB/OL].[2013-10-14].http://www.gregsa­detsky.com/aol-data/.
[22] Berry K J,Mielke P W.A Generalization of Cohen's Kappa Agreement Measure to Interval Measurement and Multiple Raters[J].Educational and Psychological,1998,48(4):921-933.
[23] Downey D,Dumais S,Horvitz E.Heads and Tails:Studies of Web Search with Common and Rare Queries[C].In:Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.2007:847-848.
[24] Clough P,Sanderson M,Abouammoh M,et al.Multiple Approaches to Analyzing Query Diversity[C].In:Proceedings of the 32nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2009:734-735

[1] 刘彤,倪维健,柳梅. 面向搜索引擎查询日志的领域术语自动识别方法*[J]. 现代图书情报技术, 2016, 32(2): 25-33.
[2] 童国平, 孙建军. 基于搜索日志的用户行为分析[J]. 现代图书情报技术, 2015, 31(7-8): 80-88.
[3] 关晓炟,吕学强,李卓,郑略省,. 用户查询日志中的中文机构名识别*[J]. 现代图书情报技术, 2014, 30(1): 72-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn