Please wait a minute...
Advanced Search
现代图书情报技术  2014, Vol. 30 Issue (10): 14-24    DOI: 10.11925/infotech.1003-3513.2014.10.04
  数字图书馆 本期目录 | 过刊浏览 | 高级检索 |
从VAST会议解读可视分析学新进展
邱均平1, 余厚强2
1. 武汉大学中国科学评价研究中心 武汉 430072;
2. 武汉大学信息管理学院 武汉 430072
The Research Development of Visual Analytics from the Perspective of VAST Conference
Qiu Junping1, Yu Houqiang2
1. Research Center for China Science Evaluation, Wuhan University, Wuhan 430072, China;
2. School of Information Management, Wuhan University, Wuhan 430072, China
全文: PDF(557 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

[目的] 对可视分析学的最新进展做全面梳理, 探讨其在图书情报学领域的深入应用, 以期为后续研究提供参考。[方法] 研究比较可视分析学的若干特点, 基于VAST会议近5年的论文, 从意义构建及合作、文本分析、高维数据可视分析、空间时间分析和应用实例5个方面进行梳理总结。[结果] 阐明可视分析学的根本原理和跨学科属性, 发现主要从开发新算法、改进现有模型和变换研究角度等方面拓展可视分析学研究。[结论] 可视分析学目前围绕意义构建基础算法和设计原则, 重点突破文本分析、高维数据和空间时间数据, 探索全面应用, 是高度面向应用的学科, 且应用面非常广泛, 虽然还处在发展期, 但能为信息服务尤其是智能服务提供方法论支持。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
余厚强
邱均平
关键词 可视分析学信息可视化意义构建高维数据情报学    
Abstract

[Objective] A thorough summarization is done on the latest development of Visual Analytics. Further application into library and information science areas is discussed. [Methods] Firstly several characteristics of visual analytics are compared, then based on VAST papers past five years, the paper summarizes from five aspects including sensemaking, text analytics, high dimensional data visual analysis, spatial and temporal analysis, and application cases. [Results] The basic principles and interdisciplinary attributes are explored. It's found that visual analytics studies are mainly conducted from angles of developing new algorithms, improving existing models and changing research perspectives etc. [Conclusions] Visual Analytics researches focus on constructing sensemaking basic algorithms and design principles, making breakthroughs in text analytics, high dimensional data, and spatial and temporal data analysis. Visual analytics is highly application oriented and widely used, and provides methodological support for information service, especially the intelligent service, although it is still in the developing stage.

Key wordsVisual analytics    Information visualization    Sensemaking    High dimensional data    Information science
收稿日期: 2014-04-08     
:  G350  
基金资助:

本文系国家社会科学基金重大项目"基于语义的馆藏资源深度聚合与可视化展示研究"(项目编号:11&ZD152)的研究成果之一。

通讯作者: 余厚强 E-mail: yuhouq@yeah.net     E-mail: yuhouq@yeah.net
作者简介: 作者贡献声明: 邱均平: 提出研究方向, 参与论文修订; 余厚强: 设计研究思路, 收集数据, 撰写论文并进行修订。
引用本文:   
邱均平, 余厚强. 从VAST会议解读可视分析学新进展[J]. 现代图书情报技术, 2014, 30(10): 14-24.
Qiu Junping, Yu Houqiang. The Research Development of Visual Analytics from the Perspective of VAST Conference. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2014.10.04.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2014.10.04

[1] Tukey J W. Exploratory Data Analysis [M]. Reading MA, US: Addison-Wesley, 1977.
[2] Wong P C, Thomas J. Visual Analytics [J]. IEEE Computer Graphics and Applications, 2004, 24 (5): 20-21.
[3] Thomas J J, Cook K A. Illuminating the Path: The Research and Development Agenda for Visual Analytics [M]. IEEE Computer Society Press, 2005.
[4] Keim D A, Kohlhammer J, Ellis G, et al. Mastering the Information Age: Solving Problems with Visual Analytics [M]. Eurographics Association, 2010.
[5] May R, Hanrahan P, Keim D A, et al. The State of Visual Analytics: Views on What Visual Analytics is and Where It is Going [C]. In: Proceedings of 2010 IEEE Symposium on Visual Analytics Science and Technology (VAST), Salt Lake City, UT, USA. IEEE, 2010:257-259.
[6] Keim D A, Mansmann F, Thomas J. Visual Analytics: How Much Visualization and How Much Analytics?[J]. SIGKDD Explorations, 2009, 11(2): 5-8.
[7] Keim D A, Mansmann F, Oelke D, et al. Visual Analytics: Combining Automated Discovery with Interactive Visualizations [C]. In: Proceedings of the 11th International Conference on Discovery Science, Budapest, Hungary. Springer Berlin Heidelberg, 2008: 2-14.
[8] Pirolli P, Card S. The Sensemaking Process and Leverage Points for Analyst Technology as Identified Through Cognitive Task Analysis [C]. In: Proceedings of the International Conference on Intelligence Analysis.2005: 2-4.
[9] Klein G, Phillips J K, Rall E L, et al. A Data-Frame Theory of Sensemaking [C]. In: Proceedings of the 6th International Conference on Naturalistic Decision Making. Mahwah, Nj: Lawrence Erlbaum Associates, 2007: 15-17.
[10] Kodagoda N, Attfield S, Wong B L, et al. Using Interactive Visual Reasoning to Support Sense-making: Implications for Design [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2217-2226.
[11] Andrews C, North C. Analyst's Workspace: An Embodied Sensemaking Environment for Large, High-resolution Displays [C]. In: Proceedings of 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), Seattle, WA, US. IEEE, 2012: 123-131.
[12] Crouser R J, Chang R. An Affordance-Based Framework for Human Computation and Human-Computer Collaboration [J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2859-2868.
[13] Endert A, Fiaux P, North C. Semantic Interaction for Sensemaking: Inferring Analytical Reasoning for Model Steering [J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2879-2888.
[14] Andrews C, North C. The Impact of Physical Navigation on Spatial Organization for Sensemaking [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2207-2216.
[15] Stasko J, Görg C, Liu Z. Jigsaw: Supporting Investigative Analysis Through Interactive Visualization [J]. Information Visualization, 2008, 7(2): 118-132.
[16] Kadivar N, Chen V, Dunsmuir D, et al. Capturing and Supporting the Analysis Process [C]. In: Proceedings of IEEE Symposium on Visual Analytics Science and Technology (VAST'09), Atlantic City, NJ, US. IEEE, 2009:131-138.
[17] Wright W, Schroh D, Proulx P, et al. The Sandbox for Analysis: Concepts and Methods [C]. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI'06). New York: ACM, 2006: 801-810.
[18] Zhang X, Qu Y, Giles C L, et al. CiteSense: Supporting Sensemaking of Research Literature[C]. In: Proceedings of the 26th Annual Sigchi Conference on Human Factors in Computing Systems (CHI'08). New York: ACM, 2008: 677-680.
[19] Gou L, Zhang X, Luo A, et al. SocialNetSense: Supporting Sensemaking of Social and Structural Features in Networks with Interactive Visualization [C]. In: Proceedings of 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), Seattle, WA, US. IEEE, 2012: 133-142.
[20] Hajizadeh A H, Tory M, Leung R. Supporting Awareness Through Collaborative Brushing and Linking of Tabular Data [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2189-2197.
[21] Willett W, Ginosar S, Steinitz A, et al. Identifying Redundancy and Exposing Provenance in Crowdsourced Data Analysis [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2198-2206.
[22] Choo J, Lee C, Reddy C K, et al. Utopian: User-driven Topic Modeling Based on Interactive Nonnegative Matrix Factorization [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 1992-2001.
[23] Ramage D, Dumais S, Liebling D J. Characterizing Microblogs with Topic Models [C]. In: Proceedings of the 4th International Conference on Weblogs and Social Media. The AAAI Press, 2010.
[24] Dou W, Yu L, Wang X, et al. Hierarchicaltopics: Visually Exploring Large Text Collections Using Topic Hierarchies [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2002-2011.
[25] Oesterling P, Scheuermann G, Teresniak S, et al. Two-stage Framework for a Topology-based Projection and Visualization of Classified Document Collections [C]. In: Proceedings of 2010 IEEE Symposium on Visual Analytics Science and Technology (VAST), Salt Lake City, UT, US. IEEE, 2010:91-98.
[26] Jankowska M, Keselj V, Milios E. Relative N-gram Signatures: Document Visualization at the Level of Character N-grams [C]. In: Proceedings of the 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), Seattle, WA, US. IEEE, 2012: 103-112.
[27] Dou W, Wang X, Skau D, et al. Leadline: Interactive Visual Analysis of Text Data Through Event Identification and Exploration [C]. In: Proceedings of the 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), Seattle, WA, US. IEEE, 2012:93-102.
[28] Gleicher M. Explainers: Expert Explorations with Crafted Projections[J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2042-2051.
[29] Hu X, Bradel L, Maiti D, et al. Semantics of Directly Manipulating Spatializations [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2052-2059.
[30] Shadoan R, Weaver C. Visual Analysis of Higher-order Conjunctive Relationships in Multidimensional Data Using a Hypergraph Query System [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2070-2079.
[31] Zhao J, Collins C, Chevalier F, et al. Interactive Exploration of Implicit and Explicit Relations in Faceted Datasets [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2080-2089.
[32] Wang B, Ruchikachorn P, Mueller K. SketchpadN-D: WYDIWYG Sculpting and Editing in High-dimensional Space [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2060-2069.
[33] Ferreira N, Poco J, Vo H T, et al. Visual Exploration of Big Spatio-Temporal Urban Data: A Study of New York City Taxi Trips [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2149-2158.
[34] Wang Z, Lu M, Yuan X, et al. Visual Traffic Jam Analysis Based on Trajectory Data [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2159-2168.
[35] Packer E, Bak P, Nikkila M, et al. Visual Analytics for Spatial Clustering: Using a Heuristic Approach for Guided Exploration [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2179-2188.
[36] Bernard J, Wilhelm N, Kruger B, et al. Motionexplorer: Exploratory Search in Human Motion Capture Data Based on Hierarchical Aggregation [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2257-2266.
[37] Monroe M, Lan R, Lee H, et al. Temporal Event Sequence Simplification [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2227-2236.
[38] Rind A, Lammarsch T, Aigner W, et al. TimeBench: A Data Model and Software Library for Visual Analytics of Time-oriented Data [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12):2247-2256.
[39] Muhlbacher T, Piringer H. A Partition-Based Framework for Building and Validating Regression Models [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 1962-1971.
[40] Broeksema B, Baudel T, Telea A G, et al. Decision Exploration Lab: A Visual Analytics Solution for Decision Management [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 1972-1981.
[41] Schmidt J, Groller M E, Bruckner S. Vaico: Visual Analysis for Image Comparison [J]. IEEE Transactions on Visualiza­tion and Computer Graphics, 2013, 19(12): 2090-2099.
[42] Schultz T, Kindlmann G L. Open-Box Spectral Clustering: Applications to Medical Image Analysis [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2100-2108.
[43] Legg P A, Chung D H S, Parry M L, et al. Transformation of an Uncertain Video Search Pipeline to a Sketch-based Visual Analytics Loop [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2109-2118.
[44] Meghdadi A H, Irani P. Interactive Exploration of Surveillance Video Through Action Shot Summarization and Trajectory Visualization [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2119-2128.
[45] Kurzhals K, Weiskopf D. Space-Time Visual Analytics of Eye-Tracking Data for Dynamic Stimuli [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2129-2138.
[46] Xu P, Wu Y, Wei E, et al. Visual Analysis of Topic Competition on Social Media [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2012-2021.
[47] Bosch H, Thom D, Heimerl F, et al. ScatterBlogs2: Real-Time Monitoring of Microblog Messages Through User-guided Filtering [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2022-2031.
[48] Ghani S, Kwon B C, Lee S, et al. Visual Analytics for Multimodal Social Network Analysis: A Design Study with Social Scientists [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2032-2041.
[49] Butler P, Chakraborty P, Ramakrishan N. The Deshredder: A Visual Analytic Approach to Reconstructing Shredded Documents [C]. In: Proceedings of the 2012 IEEE Conference on Visual Analytics Science and Technology (VAST), Seattle, WA, US. IEEE, 2012: 113-122.
[50] Walker R, Slingsby A, Dykes J, et al. An Extensible Framework for Provenance in Human Terrain Visual Analytics [J]. IEEE Transactions on Visualization and Computer Graphics, 2013, 19(12): 2139-2148.
[51] 李广建, 杨林. 大数据视角下的情报研究与情报研究技术[J]. 图书与情报, 2012(6): 1-8. (Li Guangjian, Yang Lin. Intelligence Analysis and Intelligence Technology in View of Big Data [J]. Library and Information, 2012(6): 1-8.)
[52] 姜世华. 知识可视化和可视分析在学科情报研究中的应用[J]. 图书馆学研究, 2009(3): 90-92. (Jiang Shihua. Knowledge Visualization and Visual Analysis in Subject Information Research [J]. Researches in Library Science, 2009(3): 90-92.)
[53] Chen C, Zhang J, Vogeley M S. Making Sense of the Evolution of a Scientific Domain: A Visual Analytic Study of the Sloan Digital Sky Survey Research [J]. Scientometrics, 2010, 83(3): 669-688.
[54] Chen C, Hu Z, Milbank J, et al. A Visual Analytic Study of Retracted Articles in Scientific Literature [J]. Journal of the American Society for Information Science and Technology, 2013, 64(2):234-253.
[55] Çöltekin A, Fabrikant S I, Lacayo M. Exploring the Efficiency of Users' Visual Analytics Strategies Based on Sequence Analysis of Eye Movement Recordings [J]. International Journal of Geographical Information Science, 2010, 24(10): 1559-1575.
[56] 邱均平, 余厚强, 吕红, 等. 国外馆藏资源可视化研究综述[J]. 情报资料工作, 2014, 35(1): 12-19. (Qiu Junping, Yu Houqiang, Lv Hong, et al. Review of the Visualization Researches on Library - Collected Resources Abroad [J]. Information and Documentation Services, 2014, 35(1): 12-19.)
[57] Wong B L, Choudhury S T, Rooney C, et al. INVISQUE: Technology and Methodologies for Interactive Information Visualization and Analytics in Large Library Collections [A]. // Research and Advanced Technology for Digital Libraries[M]. Springer Berlin Heidelberg, 2011: 227-235.
[58] 洪文学, 王金甲. 可视化和可视分析学[J]. 燕山大学学报, 2010, 34 (2): 95-99, 105. (Hong Wenxue, Wang Jinjia. Survey on Visualization and Visual Analytics [J]. Journal of Yanshan University, 2010, 34(2): 95-99, 105.)

[1] 谢秀芳,张晓林. 针对科技路线图的文本挖掘研究: 集成分析及可视化*[J]. 数据分析与知识发现, 2017, 1(1): 16-25.
[2] 曾新红, 蔡庆河, 黄华军, 林伟明. 基于力导向模型的非一致节点群组布局可视化算法研究[J]. 现代图书情报技术, 2014, 30(9): 33-43.
[3] 夏立新, 蔡昕, 石义金, 孙丹霞, 王忠义. Web生活服务信息的组织与可视化研究[J]. 现代图书情报技术, 2014, 30(4): 85-91.
[4] 钱力, 张晓林, 李春旺, 王小梅, 杨立英, 陈挺, 张智雄. 利用OSGi的科技情报分析集成服务架构研究与应用[J]. 现代图书情报技术, 2014, 30(12): 62-70.
[5] 钱力, 张智雄, 邹益民, 黄永文. 信息可视化检索在数字图书馆中的应用实践[J]. 现代图书情报技术, 2012, 28(4): 74-78.
[6] 刘萍, 胡月红. 基于FCA和关联规则的情报学本体构建[J]. 现代图书情报技术, 2012, 28(2): 34-40.
[7] 曾新红, 蔡庆河, 曾汉龙, 唐铖, 黄华军, 林伟明. 中文叙词表本体可视化群组布局算法研究与实现[J]. 现代图书情报技术, 2012, (10): 8-15.
[8] 乔建忠. 基于业务关联的政务信息资源分类系统的研究与实现[J]. 现代图书情报技术, 2010, 26(9): 28-36.
[9] 周宁 何坚. 可视化原型系统的实现*[J]. 现代图书情报技术, 2010, 26(7/8): 3-8.
[10] 吴佳鑫 王健海. 基于态势感知理论的可视化感知模型[J]. 现代图书情报技术, 2010, 26(7/8): 9-14.
[11] 陈亦佳,赵星. 基于期刊引文网络视角研究国际图书馆学情报学知识交流[J]. 现代图书情报技术, 2009, 25(6): 55-60.
[12] 刘玮,周宁,马莹珺. 信息可视化在音频管理领域的应用*——语音信息可视化研究[J]. 现代图书情报技术, 2008, 24(7): 33-37.
[13] 杨峰 . ICV:信息交流的可视化模型*[J]. 现代图书情报技术, 2008, 24(5): 50-55.
[14] 张少龙,周宁,吴佳鑫 . 专利文献引用关联可视化系统的构建-以“美国专利数据库 ( USPTO )检索系统”为例[J]. 现代图书情报技术, 2007, 2(2): 64-66.
[15] 周宁,张会平,陈勇跃 . 信息可视化与知识组织*[J]. 现代图书情报技术, 2006, 1(7): 62-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn