Please wait a minute...
Advanced Search
现代图书情报技术  2014, Vol. 30 Issue (10): 33-41    DOI: 10.11925/infotech.1003-3513.2014.10.06
  知识组织与知识管理 本期目录 | 过刊浏览 | 高级检索 |
基于引文内容的单篇学术论文参考文献网络结构研究
卢超, 章成志
南京理工大学经济管理学院 南京 210094
Study on the Reference Network of Single Academic Article Based on Citation Content
Lu Chao, Zhang Chengzhi
School of Economics & Management, Nanjing University of Science and Technology, Nanjing 210094, China
全文: PDF(1213 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

[目的] 通过对参考文献在学术论文正文中的引用及分布情况的分析,探究参考文献的网络结构形态。[方法] 基于575篇结构化的学术论文数据,利用文本抽取、相似度计算等技术, 构建每篇学术论文的参考文献的网络结构,结合实例分析参考文献之间的内在联系及其可能的原因。[结果] 参考文献间的相似度与其之间的相对距离有一定的负相关性。单篇学术论文中亦存在多样、复杂的网络结构形态。[局限] 部分全文数据引文标注不够规范,影响实验结果的准确性;参考文献之间相对位置的衡量仍不够精确,需要深入挖掘文本加以解决。[结论] 从实验结果来看,参考文献的网络结构大致可分为三类,其形成的原因各有不同。单篇论文中参考文献网络仍需深入研究。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢超
章成志
关键词 引文分析引文内容网络分析文本挖掘    
Abstract

[Objective] To explore the form of the reference networks via the analyzing how the references are cited and disbuted in the content of the academic articles. [Methods] Based on the structured data of 575 academic articles, utilize content extraction, similarity computing and other technologies to build the networks of every single article's references and combine examples to analyze the interrelations among them and to find out the reasons. [Results] Some negative connections exsist between the similarity of references and their relative distance. Diversification and different models exist in the reference network of a single article as well. [Limitations] Some parts of the full-text data are not accurate enough, which affects the results of the experiment.The evaluation of the relative distance among references in this study lacks accuracy. Deep mining of the texts is needed to solve the problem. [Conclusions] From the results, the reference network structures can be roughly classfied into three categories, and the causes are different. The reference network of single academic article needs more studies.

Key wordsCitation analysis    Citation content    Network analysis    Text mining
收稿日期: 2014-04-09     
:  TP393  
通讯作者: 章成志 E-mail: zhangcz@njust.edu.cn     E-mail: zhangcz@njust.edu.cn
作者简介: 作者贡献声明: 卢超: 设计研究方案, 设计实验, 清洗与分析数据, 起草论文; 章成志: 提出研究思路, 讨论研究方案, 采集分析数据, 论文最终版本修订。
引用本文:   
卢超, 章成志. 基于引文内容的单篇学术论文参考文献网络结构研究[J]. 现代图书情报技术, 2014, 30(10): 33-41.
Lu Chao, Zhang Chengzhi. Study on the Reference Network of Single Academic Article Based on Citation Content. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2014.10.06.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2014.10.06

[1] 邱均平. 信息计量学[M]. 武汉: 武汉大学出版社, 2007. (Qiu Junping. Information Metrology [M]. Wuhan: Wuhan University Press, 2007.)
[2] 杨思洛. 引文分析存在的问题及其原因探究[J]. 中国图书馆学报, 2011, 37(3): 108-117. (Yang Siluo. The Problems of Citation Analysis and Their Causes [J]. Journal of Library Science in China, 2011, 37(3): 108-117.)
[3] Wakefield R. Networks of Accounting Research: A Citation-Based Structural and Network Analysis [J]. The British Accounting Review, 2008, 40(3): 228-244.
[4] 柯平, 贾东琴. 2001-2010 年境外信息管理研究进展——基于相关文献的计量分析和内容分析[J]. 中国图书馆学报, 2011, 37(5): 61-74. (Ke Ping, Jia Dongqin. Research Progress on Information Management from 2001 to 2010 at Abroad: Based on the Bibliometric Analysis and Content Analysis [J]. Journal of Library Science in China,2011, 37(5): 61-74.)
[5] Halevi G, Moed H F. The Thematic and Conceptual Flow of Disciplinary Research: A Citation Context Analysis of the Journal of Informetrics, 2007 [J]. Journal of the American Society for Information Science and Technology, 2013, 64(9): 1903-1913.
[6] Yu T, Yu G, Wang M. Classification Method for Detecting Coercive Self-Citation in Journals [J]. Journal of Informetrics, 2014, 8(1): 123-135.
[7] 祝清松, 冷伏海. 基于引文内容分析的高被引论文主题识别研究[J]. 中国图书馆学报, 2014, 40(1): 39-49. (Zhu Qingsong, Leng Fuhai. Topic Identification of Highly Cited Papers Based on Citation Content Analysis [J]. Journal of Library Science in China, 2014, 40(1): 39-49.)
[8] Liu X, Zhang J, Guo C. Full-Text Citation Analysis: A New Method to Enhance Scholarly Networks [J]. Journal of the American Society for Information Science and Technology, 2013, 64(9): 1852-1863.
[9] Jeong Y K, Song M, Ding Y. Content-Based Author Co-citation Analysis [J]. Journal of Informetrics, 2014, 8(1): 197-211.
[10] Garfield E. Citation Analysis as a Tool in Journal Evaluation [J]. Science, 1972, 178(4060): 471-479.
[11] Kessler M M. Bibliographic Coupling Between Scientific Papers [J]. American Documentation, 1963, 14(1): 10-25.
[12] Small H. Co-citation in the Scientific Literature: A New Measure of the Relationship Between Two Documents [J]. Journal of the American Society for Information Science, 1973, 24(4): 265-269.
[13] Marshakova I V. System of Document Connections Based on References [J]. Scientific and Technical Information Serial of Viniti, 1973, 6(2): 3-8.
[14] Liu Y, Rousseau R. Interestingness and the Essence of Citation [J]. Journal of Documentation, 2013, 69(4): 580-589.
[15] Zhang G, Ding Y, Milojevi? S. Citation Content Analysis (CCA): A Framework for Syntactic and Semantic Analysis of Citation Content [J]. Journal of the American Society for Information Science and Technology, 2013, 64(7): 1490-1503.
[16] Waltman L R, Costas R. F1000 Recommendations as a New Data Source for Research Evaluation: A Comparison with Citations[EB/OL].(2013-03-18).[2014-04-09]. http://arxiv.org/ ftp/arxiv/papers/1303/1303.3875.pdf.
[17] 叶继元. 首届人文社会科学评价学术研讨会综述[J]. 学术界, 2009(4): 301-304. (Ye Jiyuan. Review of the First Conference of Humanities and Social Science Evaluation Academics in China [J]. Academics in China, 2009(4): 301-304.)
[18] Content-based Citation Analysis: The Next Generation in Citation Analysis[EB/OL]. (2012-11-14). [2014-03-15]. http:// www.lis.illinois.edu/Events/2012/09/26/Content-Based-Citation-Analysis-Next-Generation-Citation-Analysis.
[19] 刘盛博, 丁堃, 刘则渊. 基于引用内容的引文检索与推荐系统[J]. 情报学报, 2013, 32(11): 1157-1163. (Liu Shengbo, Ding Kun, Liu Zeyuan.Citation Retrieval and Recommendation Based on Citation Context [J]. Journal of the China Society for Scientific and Technical Information, 2013, 32(11): 1157-1163.)
[20] Bradshaw S. Reference Directed Indexing: Redeeming Relevance for Subject Search in Citation Indexes [C]. In: Proceedings of the 7th European Conference (ECDL'03), Trondheim, Norway. Berlin, Heidelberg: Springer, 2003: 499-510.
[21] Ritchie A, Teufel S, Robertson S. Using Terms from Citations for IR: Some First Results [C]. In: Proceedings of the 30th European Conference on IR Research (ECIR'08), Glasgow, UK. Berlin, Heidelberg: Springer, 2008: 211-221.
[22] Boyack K W, Small H, Klavans R. Improving the Accuracy of Co-citation Clustering Using Full Text [J]. Journal of the American Society for Information Science and Technology, 2013, 64(9): 1759-1767.
[23] Hu Z, Chen C, Liu Z. Where are Citations Located in the Body of Scientific Articles? A Study of the Distributions of Citation Locations [J]. Journal of Informetrics, 2013, 7(4): 887-896.
[24] Liu S, Chen C. The Differences Between Latent Topics in Abstracts and Citation Contexts of Citing Papers [J]. Journal of the American Society for Information Science and Technology, 2013, 64(3): 627-639.
[25] Salton G, Wong A, Yang C S. A Vector Space Model for Automatic Indexing [J]. Communications of the ACM, 1975, 18(11): 613-620.

[1] 杨亚楠,赵文辉,张健,谭珅,张贝贝. 基于多视图协同的政策文本可视化研究*[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[2] 张梦吉,杜婉钰,郑楠. 引入新闻短文本的个股走势预测模型[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
[3] 张宁,尹乐民,何立峰. 网络股评“发布者-关注者”BSI与股票市场关联性研究*[J]. 数据分析与知识发现, 2018, 2(6): 1-12.
[4] 范馨月,崔雷. 基于文本挖掘的药物副作用知识发现研究[J]. 数据分析与知识发现, 2018, 2(3): 79-86.
[5] 陈芬,付希,何源,薛春香. 融合社会网络分析与影响力扩散模型的微博意见领袖发现研究*[J]. 数据分析与知识发现, 2018, 2(12): 60-67.
[6] 王忠义,张鹤铭,黄京,李春雅. 基于社会网络分析的网络问答社区知识传播研究[J]. 数据分析与知识发现, 2018, 2(11): 80-94.
[7] 李飞,张健,王宗水. 社会化推荐研究进展与发展趋势演化*——基于文献计量和社会网络分析的视角[J]. 数据分析与知识发现, 2017, 1(6): 22-35.
[8] 范如霞,曾建勋,高亚瑞玺. 基于合作网络的学者动态学术影响力模式识别研究[J]. 数据分析与知识发现, 2017, 1(4): 30-37.
[9] 汪强兵,章成志. 融合内容与用户手势行为的用户画像构建系统设计与实现*[J]. 数据分析与知识发现, 2017, 1(2): 80-86.
[10] 谢秀芳,张晓林. 针对科技路线图的文本挖掘研究: 集成分析及可视化*[J]. 数据分析与知识发现, 2017, 1(1): 16-25.
[11] 王曰芬,靳嘉林. 比较分析《现代图书情报技术》近10年发文特征与发展趋势*[J]. 现代图书情报技术, 2016, 32(9): 1-16.
[12] 武慧娟,JiaTinaDu,孙鸿飞,Jannatul Fardous. 基于K-核塌缩序列的社会化资源推荐中核心用户发现研究*[J]. 现代图书情报技术, 2016, 32(9): 58-64.
[13] 姚兆旭,马静. 面向微博话题的“主题+观点”词条抽取算法研究*[J]. 现代图书情报技术, 2016, 32(7-8): 78-86.
[14] 兰秋军,刘文星,李卫康,胡星野. 融合句法信息的金融论坛文本情感计算研究*[J]. 现代图书情报技术, 2016, 32(4): 64-71.
[15] 毕强, 刘健, 鲍玉来. 基于语义相似度的文本聚类研究*[J]. 数据分析与知识发现, 2016, 32(12): 9-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn