Please wait a minute...
Advanced Search
现代图书情报技术  2015, Vol. 31 Issue (4): 34-40    DOI: 10.11925/infotech.1003-3513.2015.04.05
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
一种基于词语抽象度的汉语隐喻识别方法
黄孝喜1,2, 张华1, 陆蓓1, 王荣波1, 吴铤1
1 杭州电子科技大学认知与智能计算研究所 杭州 310018;
2 浙江大学语言与认知研究中心 杭州 310028
An Approach to Chinese Metaphor Identification Based on Word Abstractness
Huang Xiaoxi1,2, Zhang Hua1, Lu Bei1, Wang Rongbo1, Wu Ting1
1 Institution of Cognitive and Intelligent Computing, Hangzhou Dianzi University, Hangzhou 310018, China;
2 Center for the Study of Language and Cognition, Zhejiang University, Hangzhou 310028, China
全文: PDF(410 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

[目的]设计一种自动计算汉语词语抽象度的方法, 并将其用在自然语言理解中的隐喻识别任务。[方法]以统计学习理论中逻辑回归为计算模型, 把神经网络语言模型获取的词语词向量作为特征, 通过构建抽象词库得到特征权重向量, 计算汉语词语抽象度。提出一种基于词语抽象度的汉语隐喻识别算法, 验证该方法的应用效果。[结果]通过与已有的方法进行实验对比, 本文设计的汉语词语抽象度计算方法更接近于人的认知常识;并且在隐喻识别任务中, 也体现出更好的准确率。[局限]词语词向量表示词语抽象程度有一些缺陷; 抽象词语库的规模影响特征权重向量的学习。[结论]词语抽象度计算可以表现为人对概念的一种抽象分类能力, 本文提出的汉语词语抽象度计算方法得到的结果能够较好地拟合人的认知, 并且实验证明词语抽象度可有效提高隐喻识别的效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张华
王荣波
吴铤
陆蓓
黄孝喜
关键词 词语抽象度神经网络语言模型隐喻识别    
Abstract

[Objective] Design a method to automatically compute Chinese word abstractness, and introduce it into metaphor identification task in natural language understanding. [Methods] The word abstractness is computed by logistic regression model. The features are the word vectors computed by neural network model and the feature weight vectors come from a hand coded abstractness dictionary. A metaphor identification algorithm based on word abstractness is proposed to demonstrate the validity of this method. [Results] By comparing with the existing methods of word abstractness computing, this method has better accordance with human cognition and is an effective method in metaphor identification task. [Limitations] The utilization of word vectors for word abstractness is defective. The scale of the abstract words affects the learning of feature weight vectors. [Conclusions] Word abstractness computing reflects the ability to concept classification, Chinese word abstractness computed by this method is better fitting the human cognition, and the experimental results show that word abstractness can improve the effect of metaphor identification.

Key wordsWord abstractness    Neural network language model    Metaphor identification
收稿日期: 2014-10-28     
:  TP391  
基金资助:

本文系国家自然科学基金青年基金项目“引入涉身认知机制的汉语隐喻计算模型及其实现”(项目编号:61103101)、国家自然科学基金青年基金项目“基于马尔科夫树与DRT的汉语句群自动划分算法研究”(项目编号:61202281)和教育部人文社会科学研究青年基金项目“面向信息处理的汉语隐喻研究”(项目编号:10YJCZH052)的研究成果之一。

通讯作者: 黄孝喜,ORCID:0000-0003-4483-3664,E-mail:huangxx@hdu.edu.cn     E-mail: huangxx@hdu.edu.cn
作者简介: 作者贡献声明: 黄孝喜,张华,王荣波:提出研究思路,设计研究方案;张华,黄孝喜:进行实验;张华,黄孝喜,吴铤:采集、清洗和分析数据;黄孝喜,张华,陆蓓:论文起草;黄孝喜:论文最终版本修订。
引用本文:   
黄孝喜, 张华, 陆蓓, 王荣波, 吴铤. 一种基于词语抽象度的汉语隐喻识别方法[J]. 现代图书情报技术, 2015, 31(4): 34-40.
Huang Xiaoxi, Zhang Hua, Lu Bei, Wang Rongbo, Wu Ting. An Approach to Chinese Metaphor Identification Based on Word Abstractness. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2015.04.05.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2015.04.05

[1] Graesser A C, McNamara D S, Louwerse M M, et al. Coh-Metrix: Analysis of Text on Cohesion and Language [J]. Behavior Research Methods, Instruments, & Computers, 2004, 36(2): 193-202.
[2] McCarthy P M, Renner A M, Duncan M G, et al. Identifying Topic Sentencehood [J]. Behavior Research Methods, 2008, 40(3): 647-664.
[3] Feng S, Cai Z, Crossley S A, et al. Simulating Human Ratings on Word Concreteness [C]. In: Proceedings of the 24th International Florida Artifical Intelligence Research Society Conference, Palm Beach, Florida, USA. 2011: 245-250.
[4] Gargett A, Ruppenhofer J, Barnden J. Dimensions of Metaphorical Meaning[C]. In: Proceedings of the 4th Workshop on Cognitive Aspects of the Lexicon, 2014: 166-173.
[5] Turney P, Neuman Y, Assaf D, et al. Literal and Metaphorical Sense Identification Through Concrete and Abstract Context [C]. In: Proceedings of the 2011 Conference on the Empirical Methods in Natural Language Processing, Edinburgh, UK. 2011:680-690.
[6] 龙涛. 抽象名词的隐喻性“有界”空间范畴义[J]. 武汉大学学报: 人文科学版, 2011, 64(4): 112-117. (Long Tao. Metaphorical “Bounded” Space Category Meaning of Abstract Nouns [J]. Wuhan University Journal: Humanity Sciences, 2011, 64(4): 112-117.)
[7] 官杨. 程度副词修饰名词浅析[J]. 安徽文学(下半月), 2008(12): 307-308. (Guan Yang. Analysis of the Nouns Modified by Adverbs [J]. Anhui Literature, 2008(12): 307-308.)
[8] 鲁晓雁. 抽象名词语义搭配情况调查(之一)[J]. 学术交流, 2002(2): 109-112. (Lu Xiaoyan. An Investigation into the Semantic Collocation of Abstract Nouns [J]. Academic Exchange, 2002(2): 109-112.)
[9] 赵红艳. 基于语义知识的动词隐喻识别与应用[D]. 南京: 南京师范大学, 2012. (Zhao Hongyan. Chinese Verb Metaphor Recognition and Application Based on Semantic Knowledge [D]. Nanjing: Nanjing Normal University, 2012.)
[10] 杨玉玲. 认知凸显性和带“有”的相关格式[J]. 修辞学习, 2007(5): 31-34. (Yang Yuling. Cognitive Salience and the Contained “Have” Sentence Format [J]. Rhetoric Learning, 2007(5): 31-34.)
[11] Bengio Y, Ducharme R, Vincent P, et al. A Neural Probabilistic Language Mode [J]. Journal of Machine Learning Research, 2003, 3: 1137-1155.
[12] Coltheart M. The MRC Psycholinguistic Database [J]. The Quarterly Journal of Experimental Psychology, 1981, 33(4): 497-505.
[13] Lakoff G, Johnsen M. Metaphors We Live by [M]. The University of Chicago Press, 1980.
[14] Lafferty J, McCallum A, Pereira F C N. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data [C]. In: Proceedings of the 18th International Conference on Machine Learning. 2001: 282-289.
[15] Cristianini N, Shawe-Taylor J. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods [M]. Cambridge University Press, 2000.
[16] 刘挺, 车万翔, 李正华. 语言技术平台[J]. 中文信息学报, 2011, 25(6): 53-62. (Liu Ting, Che Wanxiang, Li Zhenghua. Language Technology Platform [J]. Journal of Chinese Information Processing, 2011, 25(6): 53-62.)

[1] 黄孝喜,李晗雨,王荣波,王小华,谌志群. 基于卷积神经网络与SVM分类器的隐喻识别*[J]. 数据分析与知识发现, 2018, 2(10): 77-83.
[2] 巴志超,李纲,朱世伟. 基于语义网络的研究兴趣相似性度量方法*[J]. 现代图书情报技术, 2016, 32(4): 81-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn