Please wait a minute...
Advanced Search
现代图书情报技术  2015, Vol. 31 Issue (5): 1-7    DOI: 10.11925/infotech.1003-3513.2015.05.01
  综述评介 本期目录 | 过刊浏览 | 高级检索 |
面向科技文献的语义检索系统研究综述
王颖, 吴振新, 谢靖
中国科学院文献情报中心 北京 100190
Review on Semantic Retrieval System for Scientific Literature
Wang Ying, Wu Zhenxin, Xie Jing
National Science Library, Chinese Academy of Sciences, Beijing 100190, China
全文: PDF(480 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

[目的]对典型科技文献语义检索系统进行调研和总结。[文献范围]利用Web of Knowledge和Google Scholar检索Semantic Search相关文献以及语义检索系统的参考文献和研究报告。[方法]根据文本语义处理程度, 将这些系统归纳为语义查询扩展的检索系统、以概念或实体为中心的检索系统、以关系为中心的检索系统和面向知识发现的检索系统。[结果]提出科技文献语义检索系统的基本框架, 总结科技文献语义检索系统功能特点。[局限]缺少对语义检索系统的性能评测。[结论]为构建面向科技文献的语义检索系统提供良好借鉴。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴振新
谢靖
王颖
关键词 语义检索科技文献文本挖掘    
Abstract

[Objective] To investigate and summarize the typical semantic retrieval system for scientific literature. [Coverage] Use literatures related to semantic search retrieved by Web of Knowledge or Google Scholar, references and research reports of semantic retrieval systems. [Methods] This paper classifies current systems into four categories according to the degree of semantic processing, semantic query expansion retrieval system, concepts or entities centered retrieval system, relation-centered retrieval system, and retrieval system for knowledge discovery. [Results] The authors propose a basic framework of semantic retrieval systems for scientific literature, and summarize the features of semantic retrieval systems for scientific literature. [Limitations] Lack of performance evaluation of semantic retrieval system. [Conclusions] It provides a good guide for developing a semantic retrieval system for the scientific literature.

Key wordsSemantic search    Scientific literature    Text mining
收稿日期: 2015-01-29     
:  G250.76  
基金资助:

本文系国家“十二五”科技支撑计划基金项目“信息资源自动处理、智能检索与STKOS应用服务集成”(项目编号:2011BAH10B05)和国家“十二五”科技支撑计划基金项目“科技知识组织体系共享服务平台建设”(项目编号:2011BAH10B03)的研究成果之一。

通讯作者: 王颖,ORCID:0000-0002-1941-3134,E-mail:wangying@mail.las.ac.cn。     E-mail: wangying@mail.las.ac.cn
作者简介: 作者贡献声明: 王颖:文献调研,论文撰写;吴振新:提出研究思路和论文框架;谢靖:文献调研。
引用本文:   
王颖, 吴振新, 谢靖. 面向科技文献的语义检索系统研究综述[J]. 现代图书情报技术, 2015, 31(5): 1-7.
Wang Ying, Wu Zhenxin, Xie Jing. Review on Semantic Retrieval System for Scientific Literature. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2015.05.01.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2015.05.01

[1] Lu Z, Kim W, Wilbur W J. Evaluation of Query Expansion Using MeSH in PubMed [J]. Information Retrival, 2009, 12(1): 69-80.
[2] Griffon N, Chebil W, Rollin L, et al. Performance Evaluation of Unified Medical Language System®'s Synonyms Expansion to Query PubMed [J]. BMC Medical Informatics and Decision Making, 2012(12). doi: 10.1186/1472-6947-12-12.
[3] Matos S, Arrais J P, Maia-Rodrigues J, et al. Concept-based Query Expansion for Retrieving Gene Related Publications from MEDLINE [J]. BMC Bioinformatics, 2010(11). doi: 10. 1186/1471-2105-11-212.
[4] Bettembourg C, Diot C, Burgun A, et al. GO2PUB: Querying PubMed with Semantic Expansion of Gene Ontology Terms [J]. Journal of Biomedical Semantics, 2012, 3(1). doi: 10. 1186/2041-1480-3-7.
[5] Doms A, Schroeder M. GoPubMed: Exploring PubMed with the Gene Ontology [J]. Nucleic Acids Research, 2005 (33, Web Sever Issue): W783-W786.
[6] Kupershmidt I, Su Q J, Grewal A, et al. Ontology-based Meta-analysis of Global Collections of High-throughput Public Data [J]. PLoS One, 2010, 5(9). DOI: 10.1371/journal. pone.0013066.
[7] Nobata C, Sasaki Y, Okazaki N, et al. Semantic Search on Digital Document Repositories Based on Text Mining Results [C]. In: Proceedings of International Conferences on Digital Libraries and the Semantic Web 2009 (ICSD2009). 2009: 34-48.
[8] Coppernoll-Blach P. Quertle: The Conceptual Relationships Alternative Search Engine for PubMed [J]. Journal of Medical Library Association, 2011, 99(2): 176-177.
[9] Frijters R, Heupers B, van Beek P, et al. A Literature-based Keyword Enrichment Tool for Microarray Data Analysis [J]. Nucleic Acids Research, 2008 (36, Web Server Issue): W406-W410.
[10] Cheng D, Knox C, Young N, et al. PolySearch: A Web-based Text Mining System for Extracting Relationships Between Human Diseases, Genes, Mutations, Drugs and Metabolites [J]. Nucleic Acids Research, 2008 (36,Web Server Issue): W399-W405.
[11] Fleuren W W, Verhoeven S, Frijters R, et al. CoPub Update: CoPub 5.0 a Text Mining System to Answer Biological Questions [J]. Nucleic Acids Research, 2011 (39, Web Server Issue): W450-W454.
[12] Tsuruoka Y, Miwa M, Hamamoto K, et al. Discovering and Visualizing Indirect Associations Between Biomedical Concepts [J]. Bioinformatics, 2011, 27 (13): i111-i119.
[13] Ananiadou S. Advances of Biomedical Text Mining for Semantic Search [C]. In: Proceedings of the 2nd International Workshop on Web Science and Information Exchange in the Medical Web (MedEx'2011), Glasgow, UK. 2011.
[14] Wiley Online Library. The Smart Article: Introducing New and Enhanced Article Tools for Chemistry Content [EB/OL]. [2014-10-13]. http://onlinelibrary.wiley.com/subject/code/000128/ homepage/new.htm.
[15] Lu Z. PubMed and Beyond: A Survey of Web Tools for Searching Biomedical Literature [J]. Database: The Journal of Biological Databases and Curation, 2011. doi: 10.1093/ database/baq036.
[16] Rebholz-Schuhmann D, Kirsch H, Arregui M, et al. EBIMed-text Crunching to Gather Facts for Proteins from Medline [J]. Bioinformatics, 2007, 23(2): e237-e244.
[17] Wei C H, Kao H Y, Lu Z. PubTator: A Web-based Text Mining Tool for Assisting Biocuration [J]. Nucleic Acids Research, 2013(41,Web Server Issue): W518-W522.
[18] Bizer C, Heath T, Berners-Lee T. Linked Data-The Story So Far [J]. International Journal on Semantic Web and Information Systems, 2009, 5(3): 1-22.
[19] Fogarolli A, Keizer J, Anibaldi S, et al. AGRIS-From a Bibliographic Database to a Semantic Data Service on Agricultural Research Information [J]. Agricultural Information Worldwide, 2010, 3(1): 26-30.
[20] Yagoda A. Elsevier Health Sciences: Smart Content Drives Smart Applications Using Knowledge in Healthcare [EB/OL]. [2014-11-19]. http://www.w3.org/wiki/images/9/96/HCLSIG %24%24Meetings%24%242012-05-08_AlanYagoda.pdf.
[21] Doszkocs T. Semantic Search and Discovery [EB/OL]. [2014-10-13]. http://cendi.dtic.mil/presentations/01_12_2012_Doszkocs. pdf.
[22] Schneider A, Landefeld R, Wermter J, et al. Do Users Appreciate Novel Interface Features for Literature Search? [C]. In: Proceedings of the 2009 IEEE International Conference on Systems, Man and Cybernetics. 2009: 2062-2067.
[23] Wang J, Cetindil I, Ji S, et al. Interactive and Fuzzy Search: A Dynamic Way to Explore MEDLINE [J]. Bioinformatics, 2010, 26(18): 2321-2327.

[1] 杨亚楠,赵文辉,张健,谭珅,张贝贝. 基于多视图协同的政策文本可视化研究*[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[2] 张梦吉,杜婉钰,郑楠. 引入新闻短文本的个股走势预测模型[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
[3] 徐红霞,李春旺. 科技文献内容知识点抽取研究综述[J]. 数据分析与知识发现, 2019, 3(3): 14-24.
[4] 刘清民,姚长青,石崇德,温晓洁,孙玥莹. 面向科技文献神经机器翻译词汇表优化研究*[J]. 数据分析与知识发现, 2019, 3(3): 76-82.
[5] 张宁,尹乐民,何立峰. 网络股评“发布者-关注者”BSI与股票市场关联性研究*[J]. 数据分析与知识发现, 2018, 2(6): 1-12.
[6] 王佳琪,张均胜,乔晓东. 基于文献的科研事件表示与语义链接研究*[J]. 数据分析与知识发现, 2018, 2(5): 32-39.
[7] 范馨月,崔雷. 基于文本挖掘的药物副作用知识发现研究[J]. 数据分析与知识发现, 2018, 2(3): 79-86.
[8] 汪强兵,章成志. 融合内容与用户手势行为的用户画像构建系统设计与实现*[J]. 数据分析与知识发现, 2017, 1(2): 80-86.
[9] 谢秀芳,张晓林. 针对科技路线图的文本挖掘研究: 集成分析及可视化*[J]. 数据分析与知识发现, 2017, 1(1): 16-25.
[10] 姚兆旭,马静. 面向微博话题的“主题+观点”词条抽取算法研究*[J]. 现代图书情报技术, 2016, 32(7-8): 78-86.
[11] 兰秋军,刘文星,李卫康,胡星野. 融合句法信息的金融论坛文本情感计算研究*[J]. 现代图书情报技术, 2016, 32(4): 64-71.
[12] 贺惠新,刘丽娟. 主动学习的科技文献研究对象标引体系研究*[J]. 现代图书情报技术, 2016, 32(3): 67-73.
[13] 毕强, 刘健, 鲍玉来. 基于语义相似度的文本聚类研究*[J]. 数据分析与知识发现, 2016, 32(12): 9-16.
[14] 林园园,战洪飞,余军合,李长江,张凡. 基于产品评论的消费者情感波动分析模型构建及实证研究*[J]. 现代图书情报技术, 2016, 32(11): 44-53.
[15] 鲍玉来,毕强. 蒙古文音乐领域的语义检索初探*[J]. 现代图书情报技术, 2016, 32(11): 94-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn