Please wait a minute...
Advanced Search
现代图书情报技术  2015, Vol. 31 Issue (5): 65-72    DOI: 10.11925/infotech.1003-3513.2015.05.09
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
社交网络话题信息传播影响簇发现谱系挖掘方法
何建民1,2, 王哲1
1 合肥工业大学管理学院 合肥 230009;
2 过程优化与智能决策教育部重点实验室 合肥 230009
The Pedigree Method to Mine Influential Clusters of Topic Information in Social Network
He Jianmin1,2, Wang Zhe1
1 School of Management, Hefei University of Technology, Hefei 230009, China;
2 Key Laboratory of Process Optimization and Intelligent Decision-making, Ministry of Education, Hefei University of Technology, Hefei 230009, China
全文: PDF(601 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

[目的]利用互联网传播媒介, 在社交网络中寻找对特定话题信息有影响的人群(影响簇), 以此作为传播中介, 为企业营销决策提供理论和方法支持。[方法]通过新浪微博API收集数据, 采用谱系挖掘方法挖掘对信息传播有影响的人群, 分析个体信息传播及其之间的交互关系来发现影响簇。[结果]获得对信息传播有高影响力的人群, 利用该人群推广企业的营销信息, 可显著提高产品引导购买率。[局限]仅考虑个体自身传播影响力的因素, 未考虑微博非常规用户行为。[结论]为企业实施网络精准营销决策支持提供理论基础和实用方法。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何建民
王哲
关键词 话题信息传播频繁传播序列谱系数据挖掘影响簇发现方法    
Abstract

[Objective] The paper aims to find the user groups (influential clusters in social network) which have great influence on others in particular topics. The user groups can be employed as spread media to support the marketing decisions of enterprises. [Methods] With the data collected from Sina micro-blog, use the pedigree method to mine the influential clusters in social network, and analyze the information distribution and interaction among individuals to mine the influential clusters. [Resuls] The proposed method can find the user groups which have high influence in social network. Enterprises can utilize the user groups to distribute the marketing information and enhance the guiding rate of product sale. [Limitations] Only consider the factor which compose the influential ability of individuals, and do not take the unconventional behaviors of micro-blog users into account. [Conclusions] This paper provides the theoretical basis and practical method to support the social marketing decisions of enterprises.

Key wordsTopic information dissemination    Frequent spread sequence    Pedigree data mining    Influence clusters discovery
收稿日期: 2014-10-21     
:  TP393  
基金资助:

本文系教育部人文社会科学研究规划基金项目“面向互联网大数据的舆论领袖话语影响力评估和治理方法研究”(项目编号:14YJA630015)的研究成果之一。

通讯作者: 何建民,ORCID:0000-0002-9051-6929,E-mail:hfut_hjm@126.com。     E-mail: hfut_hjm@126.com
作者简介: 作者贡献声明: 何建民:提出研究思路,设计研究方案,论文最终版本修订;王哲:采集,清洗和分析数据,进行实验;何建民,王哲:论文起草。
引用本文:   
何建民, 王哲. 社交网络话题信息传播影响簇发现谱系挖掘方法[J]. 现代图书情报技术, 2015, 31(5): 65-72.
He Jianmin, Wang Zhe. The Pedigree Method to Mine Influential Clusters of Topic Information in Social Network. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2015.05.09.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2015.05.09

[1] 陈福集, 胡改丽. 网络舆情热点话题传播模式研究[J]. 情报杂志, 2014, 33(1): 97-101. (Chen Fuji, Hu Gaili. On the Spread Pattern of Network Public Opinion Hot Topics [J]. Journal of Intelligence, 2014, 33(1): 97-101.)
[2] 李青, 朱恒民, 杨东超. 微博网络中舆情话题传播演化模型 [J]. 现代图书情报技术, 2013(12): 74-80. (Li Qing, Zhu Hengmin, Yang Dongchao. The Topic Evolution Model of the Public Opinion in Micro-Blogging Network [J]. New Technology of Library and Information Service, 2013(12): 74-80.)
[3] Coscia M, Giannotti F, Pedreschi D. A Classification for Community Discovery Methods in Complex Networks [J]. Statistical Analysis and Data Mining, 2011, 4(5): 512-546.
[4] 黄发良, 张师超, 朱晓峰. 基于多目标优化的网络社区发现方法[J]. 软件学报, 2013, 24(9): 2062-2077. (Huang Faliang, Zhang Shichao, Zhu Xiaofeng. Discovering Network Community Based on Multi-Objective Optimization [J]. Journal of Software, 2013, 24(9): 2062-2077.)
[5] Danon L, Díaz-Guilera A, Arenas A. Effect of Size Hetero-gen-eity on Community Identification in Complex Networks [OL]. arXiv: physics/0601144.
[6] Clauset A, Newman M E J, Moore C. Finding Community Structure in Very Large Networks [J]. Physical Review E, 2004, 70(6): 066111.
[7] 肖宇, 许炜, 商召玺. 微博用户区域影响力识别算法及分析[J]. 计算机科学, 2012, 39(9): 38-42. (Xiao Yu, Xu Wei, Shang Zhaoxi. Analysis on Algorithms of Identifying Regional Influential Users in Micro-blogging [J]. Computer Science, 2012, 39(9): 38-42.)
[8] 赵发珍. 基于链接分析法的网络社区影响力研究—以国内30个网络社区网站为例[J]. 现代情报, 2013, 33(6): 91-95. (Zhao Fazhen. Influence of Online Communities Based on Link Analysis—A Case Study of 30 Network Community of China [J]. Journal of Modern Information, 2013, 33(6): 91-95.)
[9] 吴良, 黄威靖, 陈薇, 等. ACT-LDA: 集成话题、社区和影响力分析的概率模型[J]. 计算机科学与探索, 2013, 7(8): 718-728. (Wu Liang, Huang Weijing, Chen Wei, et al. ACT-LDA: A Probabilistic Model of Topic, Community and User Influence [J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(8): 718-728.)
[10] 祝帅, 郑小林, 陈德人. 论坛中的意见领袖自动发现算法研究[J]. 系统工程理论与实践, 2011, 31(S2): 7-12. (Zhu Shuai, Zheng Xiaolin, Chen Deren. Research of Algorithm for Automatic Opinion Leader Detection in BBS [J]. Systems Engineering—Theory & Practice, 2011, 31(S2): 7-12.)
[11] Matsumura N, Ohsawa Y, Ishizuka M. Influence Diffusion Model in Text-based Communication [C]. In: Proceedings of the 11th International World Wide Web Conference, Honolulu, Hawaii, USA. 2002.
[12] Song X, Chi Y, Hino K, et al. Identifying Opinion Leaders in the Blogosphere [C]. In: Proceedings of the 16th ACM Conference on Information and Knowledge Management. ACM, 2007: 971-974.
[13] Pal A, Counts S. Identifying Topical Authorities in Microblogs [C]. In: Proceedings of the 4th International Conference on Web Search and Web Data Mining, Hong Kong, China. ACM, 2011: 45-54.
[14] 徐森, 卢志茂, 顾国昌. 基于矩阵谱分析的文本聚类集成算法 [J]. 模式识别与人工智能, 2009, 22(5): 780-786. (Xu Sen, Lu Zhimao, Gu Guochang. Document Cluster Ensemble Algorithms Based on Matrix Spectral Analysis [J]. Pattern Recognition and Artificial Intelligence, 2009, 22(5): 780-786.)
[15] 陈福集, 杨善林. 一种基于SOM的中文Web文档层次聚类方法 [J]. 情报学报, 2002, 21(2): 173-176. (Chen Fuji, Yang Shanlin. A Clustering Method for Chinese Web Document Based on SOM [J]. Journal of the China Society for Scientific and Technical Information, 2002, 21(2): 173-176.)
[16] 龚尚福, 陈婉璐, 贾澎涛. 层次聚类社区发现算法的研究[J]. 计算机应用研究, 2013, 30(11): 3216-3220. (Gong Shangfu, Chen Wanlu, Jia Pengtao. Survey on Algorithms of Community Detection [J]. Application Research of Computers, 2013, 30(11): 3216-3220.)
[17] 肖波, 徐前方, 蔺志青, 等. 可信关联规则及其基于极大团的挖掘算法[J]. 软件学报, 2008, 19(10): 2597-2610. (Xiao Bo, Xu Qianfang, Lin Zhiqing, et al. Credible Association Rule and Its Mining Algorithm Based on Maximum Clique [J]. Journal of Software, 2008, 19(10): 2597-2610.)
[18] 熊涛, 何跃. 微博转发网络中意见领袖的识别与分析 [J]. 现代图书情报技术, 2013(6): 55-62. (Xiong Tao, He Yue. The Identification and Analysis of Micro-blogging Opinion Leaders in the Network of Retweet Relationship [J]. New Technology of Library and Information Service, 2013(6): 55-62.)
[19] 唐常杰, 刘威, 温粉莲, 等. 社会网络分析和社团信息挖掘的三项探索——挖掘虚拟社团的结构、核心和通信行为[J]. 计算机应用, 2006, 26(9): 2020-2023. (Tang Changjie, Liu Wei, Wen Fenlian, et al. Three Probes into the Social Network Analysis and Consortium Information Mining—Mining the Structure, Core and Communication Behavior of Virtual Consortium [J]. Journal of Computer Applications, 2006, 26(9): 2020-2023.)
[20] 夏明波, 王晓川, 孙永强, 等. 序列模式挖掘算法研究[J]. 计算机技术与发展, 2006, 16(4): 4-6. (Xia Mingbo, Wang Xiaochuan, Sun Yongqiang, et al. Research on Sequential Pattern Mining Algorithms [J]. Computer Technology and Development, 2006, 16(4): 4-6.)
[21] 刘丽娜, 沈继红, 朱强华, 等. 基于频繁传播模式的影响群落发现方法[J]. 吉林大学学报: 工学版, 2013, 43(2): 444-450. (Liu Li'na, Shen Jihong, Zhu Qianghua, et al. Discovering Tribe-leaders Based on Frequent Pattern of Propagation [J]. Journal of Jilin University: Engineering and Technology Edition, 2013, 43(2): 444-450.)
[22] Pei J, Han J, Mortazavi-Asl B, et al. Prefixspan: Mining Sequential Patterns Efficiently by Prefix-projected Pattern Growth [C]. In: Proceedings of the 17th International Conference on Data Engineering. IEEE, 2001: 215-224.
[23] Han J, Pei J, Mortazavi-Asl B, et al. FreeSpan: Frequent Pattern-projected Sequential Pattern Mining [C]. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2000: 355-359.
[24] Ester M, Kriegel H P, Sander J, et al. A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise [C]. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, USA. AAAI Press, 1996: 226-231.

[1] 曾庆田,胡晓慧,李超. 融合主题词嵌入和网络结构分析的主题关键词提取方法 *[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[2] 夏立新,曾杰妍,毕崇武,叶光辉. 基于LDA主题模型的用户兴趣层级演化研究 *[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[3] 杨宁, 黄飞虎, 文奕, 陈云伟. 基于微博用户行为的观点传播模型[J]. 现代图书情报技术, 2015, 31(12): 34-41.
[4] 余昕聪, 李红莲, 吕学强. 本体上下位关系在招生问答机器人中的应用研究[J]. 现代图书情报技术, 2015, 31(12): 65-71.
[5] 王政军, 俞小怡, 金玉玲. 利用旁路监听技术约束数字资源过量下载[J]. 现代图书情报技术, 2015, 31(12): 95-100.
[6] 刘占兵, 肖诗斌. 基于用户兴趣模糊聚类的协同过滤算法[J]. 现代图书情报技术, 2015, 31(11): 12-17.
[7] 伍万坤, 吴清烈, 顾锦江. 基于EM-LDA综合模型的电商微博热点话题发现[J]. 现代图书情报技术, 2015, 31(11): 33-40.
[8] 强韶华, 吴鹏. 地域性差异视角下的网站分类用户心智模型空间性研究[J]. 现代图书情报技术, 2015, 31(11): 68-74.
[9] 秦学东. 基于Drupal的KVM私有云管理系统解决方案[J]. 现代图书情报技术, 2015, 31(11): 91-95.
[10] 吴江, 张劲帆. 社会网络三元结构中关注影响力研究——以学生关系网络为例[J]. 现代图书情报技术, 2015, 31(10): 72-80.
[11] 姜春涛. 自动标注中文专利的引文信息[J]. 现代图书情报技术, 2015, 31(10): 81-87.
[12] 王颖, 张智雄, 李传席, 刘毅, 汤怡洁, 周子健, 钱力, 付鸿鹄. 科技知识组织体系开放引擎系统的设计与实现[J]. 现代图书情报技术, 2015, 31(10): 95-101.
[13] 桂思思, 陆伟, 黄诗豪, 周鹏程. 融合主题模型及多时间节点函数的用户兴趣预测研究[J]. 现代图书情报技术, 2015, 31(9): 9-16.
[14] 秦晓慧, 乐小虬. 面向单篇文献引文网络的主题来源与走向追踪[J]. 现代图书情报技术, 2015, 31(9): 52-59.
[15] 邓启平, 王小梅. 利用LeaderRank识别有影响力的作者[J]. 现代图书情报技术, 2015, 31(9): 60-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn