Please wait a minute...
Advanced Search
现代图书情报技术  2015, Vol. 31 Issue (6): 33-40    DOI: 10.11925/infotech.1003-3513.2015.06.06
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
面向关联数据集的本体匹配方法研究
高劲松, 程娅, 梁艳琪
华中师范大学信息管理学院 武汉 430079
Ontology Matching for Linked Data Set
Gao Jinsong, Cheng Ya, Liang Yanqi
Information Management School, Huazhong Normal University, Wuhan 430079, China
全文: PDF(626 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

目的】通过分析关联数据集的特点, 对传统本体匹配方法进行改进。【方法】从数据转换方式、名称相似度和描述信息相似度三方面将本体匹配方法合并为匹配规则, 引入遗传算法提取最佳匹配规则, 结合Jena进行实验验证。【结果】构建面向关联数据集的本体匹配框架, 实现关联数据集本体间的互联。【局限】本体匹配过程中主要考虑解决本体异构问题, 未能全面涉及多领域及跨语言的本体匹配。【结论】该匹配方法能实现数据集之间的关联, 进一步提高关联数据集的链接水平。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
程娅
梁艳琪
高劲松
关键词 关联数据本体匹配遗传算法    
Abstract

[Objective] The paper analyzes the characters of linked data set to improve the traditional Ontology matching method. [Methods] Combine the Ontology matching methods as matching rules from three aspects, which are method of data transformation, similarity of name and similarity of the description information, then use the genetic algorithm to extract the best matching rules, finally use Jena to test. [Results] Construct an Ontology matching framework for linked data set, and realize the interconnection between Ontologies of linked data set. [Limitations] The Ontology matching process mainly solves the problem of heterogeneous Ontologies, failed to match the Ontologies in different fields and languages. [Conclusions] The method can realize the correlation of the linked data set and improve the links of linked data set.

Key wordsLinked data    Ontology matching    Genetic algorithm
收稿日期: 2014-11-28     
:  G354  
基金资助:

本文系国家社会科学基金一般项目“基于关联数据的知识创造中知识外化和融合机制研究”(项目编号:12BTQ039)和教育部人文社会科学基金一般项目“关联数据在知识地图中的链接模式研究”(项目编号:11YJA870010)的研究成果之一。

通讯作者: 高劲松, ORCID: 0000-0003-0022-5923, E-mail: jsgao@mail.ccnu.edu.cn。     E-mail: jsgao@mail.ccnu.edu.cn
作者简介: 作者贡献声明: 高劲松: 提出研究思路, 论文撰写及最终版本修订; 程娅: 设计研究方案, 进行实验, 论文撰写; 梁艳琪: 论文撰写及修改。
引用本文:   
高劲松, 程娅, 梁艳琪. 面向关联数据集的本体匹配方法研究[J]. 现代图书情报技术, 2015, 31(6): 33-40.
Gao Jinsong, Cheng Ya, Liang Yanqi. Ontology Matching for Linked Data Set. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2015.06.06.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2015.06.06

[1] Berners-Lee T. Linked Data [EB/OL]. [2012-10-15]. http:// www.w3.org/DesignIssues/Linked Data.html.
[2] Brickley D, Miller L. FOAF [EB/OL]. [2014-03-05]. http:// www.foaf-project.org/.
[3] Miles A, Bechhofer S.SKOS Simple Knowledge Organization System Namespace Document - HTML Variant. [EB/OL]. (2009-08-18). [2009-08-18]. http://www.w3.org/2009/08/skos- reference/skos.html.
[4] 赵晋巍, 真溱. 本体匹配技术研究概述[J]. 现代图书情报技术, 2009(11): 6-9. (Zhao Jinwei, Zhen Zhen. Research Summary on Ontology Matching Technologies [J]. New Technology of Library and Information Service, 2009(11): 6-9.)
[5] Protégé [EB/OL]. [2013-10-15]. http://protege.stanford.edu/.
[6] Hogan A, Zimmermann A, Umbrich J, et al. Scalable and Distributed Methods for Entity Matching, Consolidation and Disambiguation over Linked Data Corpora [J]. Web Semantics: Science, Services and Agents on the World Wide Web, 2012, 10: 76-110.
[7] Raimond Y, Sutton C, Sandler M. Automatic Interlinking of Music Datasets on the Semantic Web [C]. In: Proceedings of the 17th International World Wide Web Confernce on Linked Data on the Web. 2008.
[8] Sheth A, Aleman-Meza B, Arpinar I B, et al. Semantic Association Identification and Knowledge Discovery for National Security Applications [J]. Journal of Database Management, 2005, 16(1): 33-53.
[9] 潘有能, 刘朝霞. 本体映射技术在关联数据中的应用研究[J]. 情报科学, 2015, 33(1): 54-56. (Pan Youneng, Liu Zhaoxia. Application of Ontology Matching in Linked Data [J]. Information Science, 2015, 33(1): 54-56.)
[10] 王颖, 刘群, 王慧强, 等. 一种基于RDF图的本体匹配方法[J]. 计算机应用, 2008, 28(2): 460-462. (Wang Ying, Liu Qun, Wang Huiqiang, et al. Ontology Matching Approach Based on RDF Graph [J]. Journal of Computer Applications, 2008, 28(2): 460-462.)
[11] 马费成, 赵红斌, 万燕玲, 等. 基于关联数据的网络信息资源集成[J]. 情报杂志, 2011, 30(2): 167-170. (Ma Feicheng, Zhao Hongbin, Wan Yanling, et al. Integration of Network Information Resource Based on Linked Data [J]. Journal of Intelligence, 2011, 30(2): 167-170.)
[12] 贾丽梅, 郑志蕴, 李钝, 等. 基于动态权值的关联数据语义相似度算法研究[J]. 计算机科学, 2014, 41(8): 263-266, 273. (Jia Limei, Zheng Zhiyun, Li Dun, et al. Research on Semantic Similarity Algorithm of Linked Data Based on Dynamic Weigh [J]. Computer Science, 2014, 41(8): 263-266, 273.)
[13] W3C. The Linking Open Data Cloud Diagram [EB/OL]. [2014-08-31]. http://lod-cloud.net/.
[14] Studer R, Benjamins V R, Fensel D. Knowledge Engineering, Principles and Methods [J]. Data and Knowledge Engineering, 1998, 25(1-2): 161-197.
[15] Jaro-Winkler Distance [EB/OL]. [2014-12-19]. http://en. wikipedia.org/wiki/Jaro%E2%80%93Winkler_distance.
[16] Levenshetin V I. Binary Codes Capable of Correcting Deletions, Insertions, and Reversals [J]. Soviet Physics Doklady, 1966, 10(8): 707-710.
[17] Jaccard P. Etude Comparative de la Distribution-Orale dans une Portion des Alpes et des [J]. Bulletin del la Socit Vaudoise des Sciences Naturelles, 1901, 7: 547-579.
[18] Stoilos G, Stamou G, Kollias S. A String Metric for Ontology Alignment [C]. In: Proceedings of the 2005 International Semantic Web Conference, Galway, Ireland. 2005: 624-637.
[19] Sutinen E, Tarhio J. On Using q-gram Locations in Approximate String Matching [C]. In: Proceedings of the 3rd Annual European Symposium, Corfu, Greece. 1995: 327-340.
[20] Le B T, Dieng-Kuntz R, Gandon F. On Ontology Matching Problems for Building a Corporate Semantic Web in a Multi- communities Organization [C]. In: Proceedings of the 6th International Conference on Enterprise Information Systems, Porto, Portugal.2004: 236-243.
[21] Madhavan J, Bernstein P A, Rahm E. Generic Schema Matching with Cupid [C]. In: Proceedings of the 27th International Conference on Very Large Data Bases, Rome, Italy. 2001: 49-58.
[22] Schadd F C, Roos N. MassMatch Results for OAEI 2012[C]. In: Proceedings of the 7th International Workshop on Ontology Matching, Boston, USA.2012:160-167.
[23] Melnik S, Garcia-Molina H, Rahm E. Similarity Flooding: A Versatile Graph Matching Algorithm [C]. In: Proceedings of the 18th International Conference on Data Engineering, San Jose, California, USA. 2002:117-128.
[24] Baker T, Bechhofer S, Isaac A, et al. Key Choices in the Design of Simple Knowledge Organization System (SKOS) [J]. Journal of Web Semantics: Science, Services and Agents on the World Wide Web, 2013. DOI: 10.1016/j.websem. 2013.05.001.
[25] 司徒俊峰, 曹树金, 谢莉. 论基于关联数据的知识链接构建与应用[J]. 图书情报工作, 2013, 57(16): 123-129. (Situ Junfeng, Cao Shujin, Xie Li. Study on the Pattern and the Application of Knowledge Linking Based on Linked Data [J]. Library and Information Service, 2013, 57(16): 123-129.)

[1] 沈志宏,姚畅,侯艳飞,吴林寰,李跃鹏. 关联大数据管理技术: 挑战、对策与实践*[J]. 数据分析与知识发现, 2018, 2(1): 9-20.
[2] 崔家旺,李春旺. 基于关联数据的类簇语义揭示模型研究[J]. 数据分析与知识发现, 2017, 1(4): 57-66.
[3] 姜赢,张婧,朱玲萱. 面向Cytoscape平台的关联数据知识图谱概览抽取与可视化*[J]. 数据分析与知识发现, 2017, 1(3): 29-37.
[4] 闫晶,毕强,李洁,王福. 图书馆数字资源聚合质量预测模型构建*——基于改进遗传算法和BP神经网络[J]. 数据分析与知识发现, 2017, 1(12): 49-62.
[5] 齐云飞,赵宇翔,朱庆华. 关联数据在数字图书馆移动视觉搜索系统中的应用研究*[J]. 数据分析与知识发现, 2017, 1(1): 81-90.
[6] 赵夷平,毕强. 关联数据在学术资源网相似文献发现中的应用研究*[J]. 现代图书情报技术, 2016, 32(3): 41-49.
[7] 郭振英, 赵文兵, 魏育辉. 轻量级书目本体关联数据建设实践[J]. 现代图书情报技术, 2015, 31(7-8): 139-143.
[8] 梁艺多, 翟军. 本体推理在关联数据链接发现中的应用研究[J]. 现代图书情报技术, 2015, 31(4): 87-95.
[9] 高劲松, 梁艳琪, 李珂, 肖涟, 周习曼. 面向关联数据的电子商务信用信息服务模型研究[J]. 现代图书情报技术, 2014, 30(6): 8-16.
[10] 路永和, 梁明辉. 遗传算法在改进文本特征提取方法中的应用[J]. 现代图书情报技术, 2014, 30(4): 48-57.
[11] 虞为, 陈俊鹏. 基于MapReduce的书目数据关联匹配研究[J]. 现代图书情报技术, 2013, 29(9): 15-22.
[12] 王忠义, 夏立新, 石义金, 郑森茂. 数字图书馆中层关联数据的创建与发布[J]. 现代图书情报技术, 2013, (5): 28-33.
[13] 刘炜, 夏翠娟, 张春景. 大数据与关联数据:正在到来的数据技术革命[J]. 现代图书情报技术, 2013, (4): 2-9.
[14] 夏翠娟. RDB2RDF标准及应用研究[J]. 现代图书情报技术, 2013, (4): 10-17.
[15] 朱雯晶, 夏翠娟, 刘炜. SILK关联发现框架综析[J]. 现代图书情报技术, 2013, (4): 18-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn