Please wait a minute...
Advanced Search
现代图书情报技术  2015, Vol. 31 Issue (7-8): 24-30    DOI: 10.11925/infotech.1003-3513.2015.07.04
  专题 本期目录 | 过刊浏览 | 高级检索 |
学术博客共推荐关系及核心结构特性研究——以科学网博客为例
谭旻1, 许鑫2, 赵星2
1 浙江大学信息资源管理系 杭州 310027;
2 华东师范大学商学院信息学系 上海 200241
Exploring the Co-recommendation Relationship and Its Core Structure Features of Academic Blogs——Taking ScienceNet.cn Blog as an Example
Tan Min1, Xu Xin2, Zhao Xing2
1 Department of Information Resource Management, Zhejiang University, Hangzhou 310027, China;
2 Department of Information Science, Business School, East China Normal University, Shanghai 200241, China
全文: PDF(4467 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

目的】讨论共推荐这一结合信息推荐与信息共现的信息行为概念。【方法】以学术博客为考察场景, 科学网博客为应用实例, 利用网络分析方法探索性地研究共推荐关系在学术博客中的实证特性。【结果】实证结果显示, 相对于其他类型网络, 科学网博客中的共推荐关系具有高聚集性、行为活跃、强度均衡等结构特点; 在核心-边缘结构的分析中, 网络以节点群体作为网络核心; 在核心节点群体内部, 节点之间体现一定的均衡性。【局限】共推荐行为在不同应用领域中有不同动机和功用, 本文仅基于科学网学术博客社区进行实证。【结论】学术博客研究中, 共推荐关系可作为一种新的行为研究视角, 其在核心结构上体现出更为平等的特性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

[Objective] Try to combine information recommendation and co-occurrence into a new informational relation, namely information co-recommendation in online academic blogs. [Methods] Taking ScienceNet.cn Blog as an example, use network analysis as the basis of quantitative analysis to explore the features of co-recommendation in academic blogs. [Results] The empirical research of ScienceNet.cn Blog shows that compared to the other types of networks, the case has the structural characteristics of high cohesiveness, active interaction and balanced strength; the network takes node group as the network core, and the relative balance occurs in the core group. [Limitations] Co-recommendations have different motivations and functions in different application fields. However, this paper only gives an empirical research on ScienceNet.cn. [Conclusions] The co-recommendation can be an option for future studies of academic blogs. This behavior presents more equality in the structure.

收稿日期: 2015-03-02     
:  G203  
通讯作者: 许鑫, ORCID: 0000-0001-7020-3135, E-mail: xxu@infor.ecnu.edu.cn。     E-mail: xxu@infor.ecnu.edu.cn
作者简介: 作者贡献声明: 谭旻: 实施研究方案, 论文实证部分撰写及全文修订; 许鑫: 提出研究问题, 数据处理, 论文最终版本审定; 赵星: 研究设计, 论文理论部分内容撰写。
引用本文:   
谭旻, 许鑫, 赵星. 学术博客共推荐关系及核心结构特性研究——以科学网博客为例[J]. 现代图书情报技术, 2015, 31(7-8): 24-30.
Tan Min, Xu Xin, Zhao Xing . Exploring the Co-recommendation Relationship and Its Core Structure Features of Academic Blogs——Taking ScienceNet.cn Blog as an Example. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2015.07.04.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2015.07.04

[1] Newman M E J. Networks: An Introduction [M]. Oxford: Oxford University Press, 2010.
[2] Clauset A. Finding Local Community Structure in Networks [J]. Physical Review E, 2005, 72(2): No.026132.
[3] Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions [J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
[4] Lü L, Medo M, Yeung C H, et al. Recommender Systems [J]. Physics Reports-Review Section of Physics Letters, 2012, 519(1): 1-49.
[5] Pathak B, Garfinkel R S, Gopal R D, et al. Empirical Analysis of the Impact of Recommender Systems on Sales [J]. Journal of Management Information Systems, 2010, 27(2): 159-188.
[6] Small H G. Relationship Between Citation Indexing and Word Indexing—Study of Co-occurrences of Title Words and Cited References [J]. Proceedings of the American Society for Information Science, 1973, 10: 217-218.
[7] Van Rijsbergen C J. A Theoretical Basis for the Use of Co-occurrence Data in Information Retrieval [J]. Journal of Documentation, 1977, 33(2): 106-119.
[8] Zhang J, Jastram I. A Study of Metadata Element Co-occurrence [J]. Online Information Review, 2006, 30(4): 428-453.
[9] Su H N, Lee P C. Mapping Knowledge Structure by Keyword Co-occurrence: A First Look at Journal Papers in Technology Foresight [J]. Scientometrics, 2010, 85(1): 65-79.
[10] 邱均平, 王菲菲. 基于共现与耦合的馆藏文献资源深度聚合研究探析[J]. 中国图书馆学报, 2013, 39(3): 25-33. (Qiu Junping, Wang Feifei. An Exploration of In-depth Aggregation of Library Document Resources Based on Co-occurrence and Coupling [J]. Journal of Library Science in China, 2013, 39(3): 25-33.)
[11] Lou W, Qiu J P. Semantic Information Retrieval Research Based on Co-occurrence Analysis [J]. Online Information Review, 2014, 38(1): 4-23.
[12] Egghe L, Rousseau R. Co-citation, Bibliographic Coupling and a Characterization of Lattice Citation Networks [J]. Scientometrics, 2002, 55(3): 349-361.
[13] Yan E, Ding Y. Scholarly Network Similarities: How Bibliographic Coupling Networks, Citation Networks, Cocitation Networks, Topical Networks, Coauthorship Networks, and Coword Networks Relate to Each Other [J]. Journal of the American Society for Information Science and Technology, 2012, 63(7): 1313-1326.
[14] Zhao S X, Ye F Y. Power-law Link Strength Distribution in Paper Cocitation Networks [J]. Journal of the American Society for Information Science and Technology, 2013, 64(7): 1480-1489.
[15] Zhao S X, Ye F Y. Exploring the Directed H-degree in Directed Weighted Networks [J]. Journal of Informetrics, 2012, 6(4): 619-630.
[16] 徐孝娟, 赵宇翔, 朱庆华. 民族志决策树方法在学术博客用户行为中的研究——以科学网博客为例[J]. 现代图书情报技术, 2014(1): 79-86. (Xu Xiaojuan, Zhao Yuxiang, Zhu Qinghua. Explore User's Behavior of Academic Blog Based on EDTM: Take Blog.Sciencenet as an Example [J]. New Technology of Library and Information Service, 2014(1): 79-86.)
[17] 周春雷, 朱向林. 科学网图情博客发展现状研究[J]. 图书情报知识, 2013(5): 98-105. (Zhou Chunlei, Zhu Xianglin. Study on LIS Blogs in Science Net [J]. Document, Informaiton & Knowledge, 2013(5): 98-105.)
[18] Borgatti S P, Everett M G. Everett, Models of Core/Periphery Structures [J]. Social Networks, 1999, 21(4): 375-395.
[19] Zhao S X, Zhang P L, Li J, et al. Abstracting the Core Subnet of Weighted Networks Based on Link Strengths [J]. Journal of the Association for Information Science and Technology, 2014, 65(5): 984-994.
[20] Zelnio R. Identifying the Global Core-Periphery Structure of Science[J]. Scientometrics, 2012, 91(2): 601-615.
[21] Amrit C, van Hillegersberg J. Exploring the Impact of Socio-Technical Core-Periphery Structures in Open Source Software Development [J]. Journal of Information Technology, 2010, 25(2): 216-229.
[22] Newman M E J. The Structure and Function of Complex Networks [J]. SIAM Review, 2003, 45(2): 167-256.
[23] 邹文篪, 田青, 刘佳. "投桃报李"——互惠理论的组织行为学研究述评[J]. 心理科学进展, 2012, 20(11): 1879-1888. (Zou Wenchi, Tian Qing, Liu Jia. "Give a Plum in Return for a Peach": A Review of Reciprocity Theory of Organizational Behavior [J]. Advances in Psychological Science, 2012, 20(11): 1879-1888.)
[24] 叶鹰, 张力, 赵星, 等. 用共关键词网络揭示领域知识结构的实验研究[J]. 情报学报, 2012, 31(12): 1245-1251. (Ye F Y, Zhang P L, Zhao S X, et al. An Experimental Study on Revealing Domain Knowledge Structure by Co- keyword Networks [J]. Journal of the China Society for Scientific and Technical Information, 2012, 31(12): 1245-1251.)

[1] 张颖怡, 章成志, 池雪花, 李蕾. 科研用户博文关键词标注行为差异研究——以科学网博客为例[J]. 现代图书情报技术, 2015, 31(10): 13-21.
[2] 翟姗姗, 许鑫, 夏立新. 学术博客中的用户交流与知识传播研究述评[J]. 现代图书情报技术, 2015, 31(7-8): 3-12.
[3] 许鑫, 翟姗姗, 姚占雷. 学术博客的学科交互实证分析——以科学网博客为例[J]. 现代图书情报技术, 2015, 31(7-8): 13-23.
[4] 谭旻, 许鑫. 学术博客推荐网络的h度实证——以科学网博客为例[J]. 现代图书情报技术, 2015, 31(7-8): 31-36.
[5] 唐晓波, 邱鑫. 面向主题的高质量评论挖掘模型研究[J]. 现代图书情报技术, 2015, 31(7-8): 104-112.
[6] 王传清, 毕强. 数字图书馆自动化语义标注工具系统模型研究[J]. 现代图书情报技术, 2014, 30(6): 17-24.
[7] 姜雯, 许鑫. 在线问答社区信息质量评价研究综述[J]. 现代图书情报技术, 2014, 30(6): 41-50.
[8] 唐晓波, 房小可. 微博中文本特征质量对检索效果的影响[J]. 现代图书情报技术, 2014, 30(6): 79-86.
[9] 柯青, 王秀峰. Web导航模型综述——信息觅食理论视角[J]. 现代图书情报技术, 2014, 30(2): 32-40.
[10] 李英英, 王惠临. 主题图技术在消费者健康信息资源组织中的应用——以糖尿病为例[J]. 现代图书情报技术, 2013, (12): 55-61.
[11] 陈明红, 漆贤军. 学术博客的用户接受模型及实证研究[J]. 现代图书情报技术, 2013, (12): 81-87.
[12] 陈颖, 李姣, 李军莲. 中国药品数据的知识表示方法研究[J]. 现代图书情报技术, 2013, (6): 9-15.
[13] 洪娜, 钱庆, 范炜, 方安, 王军辉. 关联数据中关系发现的可视化实践[J]. 现代图书情报技术, 2013, 29(2): 11-17.
[14] 万君, 张祥, 庞培培. 婚恋网站初始信任影响因素模型研究[J]. 现代图书情报技术, 2012, (10): 67-71.
[15] 韩耀军. 多语言信息资源调度的有色时延Petri网建模与分析[J]. 现代图书情报技术, 2012, 28(3): 40-46.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn