Please wait a minute...
Advanced Search
现代图书情报技术  2015, Vol. 31 Issue (10): 40-49    DOI: 10.11925/infotech.1003-3513.2015.10.06
  专题 本期目录 | 过刊浏览 | 高级检索 |
邵健1, 章成志1,2, 李蕾1
1 南京理工大学经济管理学院 南京 210094;
2 江苏省数据工程与知识服务重点实验室(南京大学) 南京 210093
Survey on Hashtag Mining and Its Application
Shao Jian1, Zhang Chengzhi1,2, Li Lei1
1 School of Economics & Management, Nanjing University of Science and Technology, Nanjing 210094, China;
2 Jiangsu Key Laboratory of Data Engineering and Knowledge Service (Nanjing University), Nanjing 210093, China
全文: PDF(514 KB)   HTML  
输出: BibTeX | EndNote (RIS)      

[目的] 分析当前Hashtag研究思路和技术, 归纳和总结当前Hashtag研究中所存在的问题, 并提炼Hashtag研究的理论意义与实际意义, 为更深入的Hashtag研究提供参考。[文献范围] 以2007年至2015年的国际会议和国内外期刊的60篇文献作为主要研究对象。[方法] 调研Hashtag研究及其应用的相关文献, 对Hashtag研究中各环节涉及的方法进行分析和总结。[结果] Hashtag在用户使用、Hashtag挖掘与基于Hashtag的应用研究三方面存在一些可以深入研究的问题。[结论] 未来应侧重于Hashtag的理论研究, 如用户标注Hashtag的动机、影响Hashtag标注的因素等。在实际应用中, 结合不同学科方法和多个领域的技术改善Hashtag在实际应用中的效果。

E-mail Alert

[Objective] The authors analyze Hashtag research, summarize the current problems in Hashtag research. After refining the theoretical and practical significance of Hashtag research, then present further research of Hashtag. [Coverage] About 60 literatures from international conferences and journals (2007-2015) are investigated. [Methods] Survey on Hashtag mining and its application and summarize different methods on Hashtag mining. The process and different methods of Hashtag mining are analyzed. [Results] There are some problems about user Hashtag using, mining and applications. [Conclusions] Further study should be focused on theory of Hashtag, e.g. motivation of Hashtag using, and reasons that affect Hashtag using. The performance of Hashtag application should be improved by combined of the methods and technologies from different disciplines.

收稿日期: 2015-04-29     
:  G350  

本文系国家社会科学基金项目“在线社交网络中基于用户的知识组织模式研究”(项目编号:14BTQ033)和教育部人文社会科学基金规划项目“多语言高质量社会化标签生成及聚类研究”(项目编号: 13YJA870020)的研究成果之一。

通讯作者: 章成志, ORCID: 0000-0001-8121-4796, E-mail:。     E-mail:
作者简介: 作者贡献声明:邵健: 文献调研与整理, 论文起草; 章成志: 提出研究思路, 讨论研究方案, 论文最终版本修订; 李蕾: 论文修订。
邵健, 章成志, 李蕾. Hashtag研究综述[J]. 现代图书情报技术, 2015, 31(10): 40-49.
Shao Jian, Zhang Chengzhi, Li Lei. Survey on Hashtag Mining and Its Application. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2015.10.06.

[1] Gupta M, Li R, Yin Z, et al. Survey on Social Tagging Techniques [J]. ACM SIGKDD Explorations Newsletter, 2010,12(1): 58-72.
[2] Hughes A L, Palen L. Twitter Adoption and Use in Mass Convergence and Emergency Events [J]. International Journal of Emergency Management, 2009, 6(3-4): 248-260.
[3] Deller R A. Twittering on: Audience Research and Participation Using Twitter [J]. Participations, 2011, 8(1): 216-245.
[4] Small T A. What the Hashtag? A Content Analysis of Canadian Politics on Twitter [J]. Information, Communication & Society, 2011, 14(6): 872-895.
[5] Dwyer N, Marsh S. What can the Hashtag# Trust Tell Us about How Users Conceptualise Trust? [C]. In: Proceedings of the 12th Annual International Conference on the Privacy, Security and Trust (PST). IEEE, 2014: 398-402.
[6] Zappavigna M. Discourse of Twitter and Social Media: How We Use Language to Create Affiliation on the Web [M]. Bloomsbury Academic, 2012.
[7] Ivanova M. Understanding Microblogging Hashtags for Learning Enhancement [J]. Form@ re-Open Journal per la Formazione in Rete, 2011, 11(74): 17-23.
[8] Messina C. Groups for Twitter; or a Proposal for Twitter Tag Channels [EB/OL]. [2015-05-01].
[9] Huang J, Thornton K M, Efthimiadis E N. Conversational Tagging in Twitter [C]. In: Proceedings of the 21st ACM Conference on Hypertext and Hypermedia. ACM, 2010: 173-178.
[10] Tsur O, Rappoport A. What's in a Hashtag?: Content Based Prediction of the Spread of Ideas in Microblogging Communities [C]. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining. ACM, 2012: 643-652.
[11] Chang H C. A New Perspective on Twitter Hashtag Use: Diffusion of Innovation Theory [C]. In: Proceedings of the 73rd ASIS&T Annual Meeting on Navigating Streams in an Information Ecosystem.2010.
[12] Kong S, Mei Q, Feng L, et al. Predicting Bursts and Popularity of Hashtags in Real-time [C]. In: Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM, 2014: 927-930.
[13] Ma Z, Sun A, Cong G. On Predicting the Popularity of Newly Emerging Hashtags in Twitter [J]. Journal of the American Society for Information Science and Technology, 2013, 64(7): 1399-1410.
[14] Ma Z, Sun A, Cong G. Will this# Hashtag be Popular Tomorrow? [C]. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2012: 1173-1174.
[15] van den Berg J A. The Story of the Hashtag (#): A Practical Theological Tracing of the Hashtag (#) Symbol on Twitter [J]. HTS Teologiese Studies/Theological Studies, 2014, 70(1): 1-6.
[16] Potts L, Seitzinger J, Jones D, et al. Tweeting Disaster: Hashtag Constructions and Collisions [C]. In: Proceedings of the 29th ACM International Conference on Design of Communication.ACM, 2011: 235-240.
[17] Dixon K. Feminist Online Identity: Analyzing the Presence of Hashtag Feminism [J]. Journal of Arts and Humanities, 2014, 3(7): 34-40.
[18] Komori L. We Shouldn't have to Smoke and Hide the Legalize Hashtag as a Platform for Collective Identity and Collective Action Framing [D]. University of Alberta, 2013.
[19] Skalbeck R V. Anatomy of a Conference Twitter Hashtag: #AALL2010 [OL]. Digital Preservation Publications. [2011-01- 07]. publications/5.
[20] Kywe S M, Lim E P, Zhu F. A Survey of Recommender Systems in Twitter [C]. In: Proceedings of the 4th International Conference on Social Informatics. Springer- Verlag, 2012: 420-433.
[21] Gimpel K, Schneider N, O'Connor B, et al. Part-of-Speech Tagging for Twitter: Annotation, Features, and Experiments [C]. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. Association for Computational Linguistics, 2011: 42-47.
[22] Mazzia A, Juett J.Suggesting Hashtags on Twitter [EB/OL]. [2015-05-01].
[23] Cui A, Zhang M, Liu Y, et al. Discover Breaking Events with Popular Hashtags in Twitter [C].In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management.ACM, 2012: 1794-1798.
[24] Zangerle E, Gassler W, Specht G. Recommending#-Tags in Twitter [C]. In: Proceedings of the Workshop on Semantic Adaptive Social Web (SASWeb 2011) CEUR Workshop.2011: 67-78.
[25] Kywe S M, Hoang T A, Lim E P, et al. On Recommending Hashtags in Twitter Networks [C]. In: Proceedings of the 4th International Conference on Social Informatics. Springer, 2012: 337-350.
[26] Zangerle E, Gassler W, Specht G. On the Impact of Text Similarity Functions on Hashtag Recommendations in Microblogging Environments [J]. Social Network Analysis and Mining, 2013, 3(4): 889-898.
[27] Li Z, Zhou D, Juan Y F, et al. Keyword Extraction for Social Snippets [C]. In: Proceedings of the 19th International Conference on World Wide Web. ACM, 2010:1143-1144.
[28] Xiao F, Noro T, Tokuda T. News-Topic Oriented Hashtag Recommendation in Twitter Based on Characteristic Co- occurrence Word Detection [C]. In: Proceedings of the 12th International Conference on Web Engineering. Springer, 2012: 16-30.
[29] Otsuka E, Wallace S A, Chiu D. Design and Evaluation of a Twitter Hashtag Recommendation System [C]. In: Proceedings of the 18th International Database Engineering & Applications Symposium. ACM, 2014: 330-333.
[30] Wang Y, Qu J, Liu J, et al. What to Tag Your Microblog: Hashtag Recommendation Based on Topic Analysis and Collaborative Filtering [C]. In: Proceedings of the 16th Asia-Pacific Web Conference on Web Technologies and Applications, Changsha, China. Springer, 2014: 610-618.
[31] Yu J, Shen Y. Evolutionary Personalized Hashtag Recommendation [C]. In: Proceedings of the 15th International Conference on Web-Age Information Management. Springer, 2014: 34-37.
[32] Tomar A, Godin F, Vandersmissen B, et al. Towards Twitter Hashtag Recommendation Using Distributed Word Representations and a Deep Feed Forward Neural Network [C]. In: Proceedings of 2014 International Conference on the Advances in Computing, Communications and Informatics. IEEE, 2014: 362-368.
[33] She J, Chen L. Tomoha: Topic Model-based Hashtag Recommendation on Twitter [C]. In: Proceedings of the 23rd International Conference on World Wide Web. International World Wide Web Conferences Steering Committee, 2014: 371-372.
[34] Ma Z, Sun A, Yuan Q, et al. Tagging Your Tweets: A Probabilistic Modeling of Hashtag Annotation in Twitter [C]. In: Proceedings of the 23rd ACM International Conference on Information and Knowledge Management. ACM, 2014: 999-1008.
[35] Zhang Q, Gong Y, Huang X, et al. Time-aware Personalized Hashtag Recommendation on Social Media [C]. In: Proceedings of the 25th International Conference on Computational Linguistics (COLING 2014), Dublin, Ireland. 2014: 203-212
[36] Ding Z, Qiu X, Zhang Q, et al. Learning Topical Translation Model for Microblog Hashtag Suggestion [C]. In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence. AAAI Press, 2013: 2078-2084.
[37] Krokos E, Samet H. A Look into Twitter Hashtag Discovery and Generation[C]. In: Proceedings of the 7th ACM SIGSPATIAL International Workshop on Location-Based Social Networks, Dallas, TX, USA. 2014.
[38] Gruetze T, Yao G, Krestel R. Learning Temporal Tagging Behaviour [C]. In: Proceedings of the 5th Temporal Web Analytics Workshop at the 24th International World Wide Web Conference, Florence, Italy. ACM, 2015.
[39] Harvey M, Crestani F. Long Time, No Tweets! Time-aware Personalised Hashtag Suggestion [C]. In: Proceedings of the 37th European Conference on IR Research (ECIR 2015), Vienna, Austria. 2015: 581-592.
[40] Lu H, Lee C. The Topic-Over-Time Mixed Membership Model (TOT-MMM): A Twitter Hashtag Recommendation Model that Accommodates for Temporal Clustering Effects [J]. IEEE Intelligent Systems, 2015. (Accepted)
[41] Zangerle E, Gassler W, Specht G. Using Tag Recommen­dations to Homogenize Folksonomies in Microblogging Environments [C]. In: Proceedings of the 3rd International Conference on Social Informatics. Springer-Verlag, 2011: 113-126.
[42] Tariq A, Karim A, Gomez F, et al. Exploiting Topical Perceptions over Multi-Lingual Text for Hashtag Suggestion on Twitter [C]. In: Proceedings of the 26th International Florida Artificial Intelligence Research Society Conference. AAAI Press 2013: 474-479.
[43] Li T, Wu Y, Zhang Y. Twitter Hash Tag Prediction Algorithm [C]. In: Proceedings of the ICOMP'11-The 2011 International Conference on Internet Computing, 2011.
[44] Shin Y, Lee S J, Park J. Composition Pattern Oriented Tag Extraction from Short Documents Using a Structural Learning Method [J]. Knowledge and Information Systems, 2014, 38(2): 447-468.
[45] Vergeest L. Using N-grams and Word Embeddings for Twitter Hashtag Suggestion [D]. Holland Tilburg:Tilburg University, 2014.
[46] Wang X, Wei F, Liu X, et al. Topic Sentiment Analysis in Twitter: A Graph-based Hashtag Sentiment Classification Approach [C]. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. ACM, 2011: 1031-1040.
[47] Muntean C I, Morar G A, Moldovan D. Exploring the Meaning Behind Twitter Hashtags Through Clustering [C]. In: Proceedings of the Business Information Systems Workshops. Springer, 2012: 231-242.
[48] Feng W, Zhang C, Zhang W, et al. StreamCube: Hierarchical Spatio-temporal Hashtag Clustering for Event Exploration over the Twitter Stream [C]. In: Proceedings of the 31st IEEE International Conference on Data Engineering (ICDE), 2015.
[49] 蒋盛益, 麦智凯, 庞观松, 等. 微博信息挖掘技术研究综述[J]. 图书情报工作, 2012, 56(17): 136-142. (Jiang Shengyi, Mai Zhikai, Pang Guansong, et al. A Survey of Microblog Date Mining [J]. Library and Information Service, 2012, 56(17): 136-142.)
[50] Barbosa G A R, Silva I S, Zaki M, et al. Characterizing the Effectiveness of Twitter Hashtags to Detect and Track Online Population Sentiment [C]. In: Proceedings of the CHI'12 Extended Abstracts on Human Factors in Computing Systems.ACM, 2012: 2621-2626.
[51] Davidov D, Tsur O, Rappoport A. Enhanced Sentiment Learning Using Twitter Hashtags and Smileys [C]. In: Proceedings of the 23rd International Conference on Computational Linguistics. Association for Computational Linguistics, 2010: 241-249.
[52] Mohammad S M, Kiritchenko S. Using Hashtags to Capture Fine Emotion Categories from Tweets [J]. Computational Intelligence, 2014.DOI: 10.1111/coin.12024.
[53] Qadir A, Riloff E. Learning Emotion Indicators from Tweets: Hashtags, Hashtag Patterns, and Phrases [C]. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar. Association for Computa­tional Linguistics, 2014: 1203-1209.
[54] Hadgu A T, Garimella K, Weber I. Political Hashtag hijacking in the US [C]. In: Proceedings of the 22nd International Conference on World Wide Web Companion. International World Wide Web Conferences Steering Committee, 2013: 55-56.
[55] Glasgow K, Fink C. Hashtag Lifespan and Social Networks During the London Riots [C]. In: Proceedings of the 6th International Conference on Social Computing, Behavioral- Cultural Modeling and Prediction. Springer, 2013: 311-320.
[56] 胡长龙, 唐晋韬, 王挺. 中文微博的 Hashtag 话题相关性分析[J]. 计算机科学, 2013, 40(11A): 235-237. (Hu Changlong, Tang Jintao, Wang Ting. Topical Relevance Analysis of Hashtags in Chinese Microblogging Environment [J]. Computer Science, 2013, 40(11A): 235-237.)
[57] Ozdikis O, Senkul P, Oguztuzun H. Semantic Expansion of Hashtags for Enhanced Event Detection in Twitter [C]. In:Proceedings of the 1st International Workshop on Online Social Systems. Citeseer, 2012.
[58] 章成志, 汤丽娟. 基于多语言社会化标签聚类的潜在社会关系网络发现 [J]. 情报理论与实践, 2013, 36(9): 67-71. (Zhang Chengzhi, Tang Lijuan. Latent Social Network Detection Based on Clustering of Multilingual Social Tag [J]. Information Studies: Theory & Application, 2013, 36(9): 67-71.)
[59] 孟小峰, 李勇, 祝建华. 社会计算: 大数据时代的机遇与挑战[J]. 计算机研究与发展, 2013, 50(12): 2483-2491. (Meng Xiaofeng, Li Yong, Zhu Jianhua. Social Computing in the Era of Big Data: Opportunities and Challenges [J]. Journal of Computer Research and Development, 2013, 50(12): 2483-2491.)
[60] Wang Y, Zheng B. On Macro and Micro Exploration of Hashtag Diffusion in Twitter [C]. In: Proceedings of 2014 IEEE/ACM International Conference on the Advances in Social Networks Analysis and Mining (ASONAM). IEEE, 2014: 285-288.

[1] 文秀贤,徐健. 基于用户评论的商品特征提取及特征价格研究 *[J]. 数据分析与知识发现, 2019, 3(7): 42-51.
[2] 邓诗琦,洪亮. 面向智能应用的领域本体构建研究*——以反电话诈骗领域为例[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[3] 彭浩, 徐健, 肖卓. 基于比较句的网络用户评论情感分析[J]. 现代图书情报技术, 2015, 31(12): 48-56.
[4] 段宇锋, 黄思思. 基于BFO构建中文植物物种多样性领域本体的研究[J]. 现代图书情报技术, 2015, 31(12): 72-79.
[5] 章成志, 李蕾. 社会化标签质量自动评估研究[J]. 现代图书情报技术, 2015, 31(10): 2-12.
[6] 祝婷, 秦春秀, 李祖海. 基于用户分类的协同过滤个性化推荐方法研究[J]. 现代图书情报技术, 2015, 31(6): 13-19.
[7] 李纲, 叶光辉, 张岩. “小众专家”特征识别——基于MetaFilter的实证分析[J]. 现代图书情报技术, 2015, 31(6): 71-77.
[8] 李慧, 相华婷, 汤强. 基于结构和编辑历史的Wikipedia信任模型[J]. 现代图书情报技术, 2015, 31(3): 33-38.
[9] 王睿, 胡文静, 郭玮. 常用Altmetrics工具比较[J]. 现代图书情报技术, 2014, 30(12): 18-26.
[10] 杨志墨, 刘怀亮, 赵辉. 一种基于复杂网络的中文文本表示算法[J]. 现代图书情报技术, 2014, 30(11): 38-44.
[11] 邱均平, 余厚强. 从VAST会议解读可视分析学新进展[J]. 现代图书情报技术, 2014, 30(10): 14-24.
[12] 孙鸿飞, 侯伟. 改进TFIDF算法在潜在合作关系挖掘中的应用研究[J]. 现代图书情报技术, 2014, 30(10): 84-92.
[13] 徐孝娟, 张莉, 朱庆华, 梁茹. 三螺旋模型视角下的高科技人才机构属性及学科交叉研究[J]. 现代图书情报技术, 2014, 30(9): 99-107.
[14] 毕达宇, 夏晓旭, 王靖. 用户在线评论数据挖掘的网商信用度分析[J]. 现代图书情报技术, 2014, 30(7): 77-83.
[15] 毕强, 周姗姗, 马志强, 滕广青. 面向知识关联的标签云优化机理研究*[J]. 现代图书情报技术, 2014, 30(5): 33-40.
Full text



版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190