Please wait a minute...
Advanced Search
现代图书情报技术  2015, Vol. 31 Issue (10): 72-80    DOI: 10.11925/infotech.1003-3513.2015.10.10
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
社会网络三元结构中关注影响力研究——以学生关系网络为例
吴江, 张劲帆
武汉大学信息管理学院 武汉 430072
Research on Follow Influence of Triadic Structure in Social Network——Take Student Relation Network as an Example
Wu Jiang, Zhang Jinfan
School of Information Management, Wuhan University, Wuhan 430072, China
全文: PDF(837 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

[目的] 研究线下关系网络中不同三元结构对关系形成中关注影响力的作用。[方法] 通过对221名学生在不同时间的问卷调查, 得到一个学生关系网络的动态演化过程, 进而统计分析不同三元结构对关系形成的关注影响力的作用程度。[结果] 使用线下数据得到的分析结果与之前线上数据研究结果一致, 即三元结构中存在互惠性、传递性以及反关系, 更容易形成新的关系, 即关注影响力越大。[局限] 不能完全对关系网络之外产生的影响进行控制。[结论] 线上线下关系形成规律一致, 本文研究成果具有一定的商业价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

[Objective] Study on the effects of different triadic structures on follow influence in relation formation. [Methods] This paper uses questionnaires on 221 students at different time to get the dynamic evolution process of this network, and then analyzes the effects of different triadic structures on relation formation. [Results] The results show that triadic structures with reciprocity, transitivity and revesed relationship are more likely to form a new relation. [Limitations] This paper is unable to completely control the influences besides relation network. [Conclusions] The pattern of online and offline relation formation is the same, which is valuable for bussiness.

收稿日期: 2015-04-14     
:  TP393  
基金资助:

本文系国家自然科学基金面上项目“创新2.0超网络中知识流动和群集交互的协同研究”(项目编号: 71373194)的研究成果之一。

通讯作者: 吴江, ORCID: 0000-0002-3342-9757, E-mail: jiangw@whu.edu.cn。     E-mail: jiangw@whu.edu.cn
作者简介: 作者贡献声明:吴江: 提出研究思路, 设计研究方案, 论文修订; 张劲帆: 进行实验, 撰写论文。
引用本文:   
吴江, 张劲帆. 社会网络三元结构中关注影响力研究——以学生关系网络为例[J]. 现代图书情报技术, 2015, 31(10): 72-80.
Wu Jiang, Zhang Jinfan. Research on Follow Influence of Triadic Structure in Social Network——Take Student Relation Network as an Example. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2015.10.10.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2015.10.10

[1] Wasserman S, Faust K. Social Network Analysis: Methods and Applications [M]. Cambridge University Press, 1994: 25.
[2] Milo R, Shen-Orr S, Itzkovitz S, et al. Network Motifs: Simple Building Blocks of Complex Networks [J]. Science, 2002, 298(5594): 824-827.
[3] Donald H, Wohl R R. Mass Communication and Parasocial Interaction [J]. Psychiatry, 1956, 19(3): 215-229.
[4] Romero D M, Kleinberg J. The Directed Closure Process in Hybrid Social-Information Networks, with an Analysis of Link Formation on Twitter [C]. In: Proceedings of the 4th International AAAI Conference on Weblogs and Social Media. 2010: 138-145.
[5] Tang J, Sun J, Wang C, et al. Social Influence Analysis in Large-scale Networks [C]. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2009: 807-816.
[6] Tang J, Wu S, Sun J, et al. Cross-domain Collaboration Recommendation [C]. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2012: 1285-1293.
[7] Tan C, Lee L, Tang J, et al. User-level Sentiment Analysis Incorporating Social Networks [C]. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2011: 1397-1405.
[8] Sun J, Tang J. Models and Algorithms for Social Influence Analysis [C]. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining. ACM, 2013: 775-776.
[9] Heider F. The Psychology of Interpersonal Relations [M]. Psychology Press, 1982.
[10] Klimek P, Thurner S. Triadic Closure Dynamics Drives Scaling Laws in Social Multiplex Networks [J]. New Journal of Physics, 2013, 15(6): Article No.063008.
[11] Li M, Zou H, Guan S, et al. A Coevolving Model Based on Preferential Triadic Closure for Social Media Networks [J]. Scientific Reports, 2013, 3: Article No. 2512.
[12] Lou T, Tang J, Hopcroft J, et al. Learning to Predict Reciprocity and Triadic Closure in Social Networks [J]. ACM Transactions on Knowledge Discovery from Data (TKDD), 2013, 7(2): Article No. 5.
[13] Mollenhorst G, Völker B, Flap H. Shared Contexts and Triadic Closure in Core Discussion Networks [J]. Social Networks, 2011, 33(4): 292-302.
[14] Kossinets G, Watts D J. Empirical Analysis of an Evolving Social Network [J]. Science, 2006, 311(5757): 88-90.
[15] Hopcroft J, Lou T, Tang J. Who will Follow You Back?: Reciprocal Relationship Prediction[C]. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management. ACM, 2011: 1137-1146.
[16] Seshadhri C, Pinar A, Durak N, et al. Directed Closure Measures for Networks with Reciprocity [OL]. arXiv Preprint, 2013. arXiv: 1302.6220.
[17] Snijders T A B, Pattison P E, Robins G L, et al. New Specifications for Exponential Random Graph Models [J]. Sociological Methodology, 2006, 36(1): 99-153.
[18] Robins G, Snijders T, Wang P, et al. Recent Developments in Exponential Random Graph (p*) Models for Social Networks [J]. Social Networks, 2007, 29(2): 192-215.
[19] Kwak H, Lee C, Park H, et al. What is Twitter, a Social Network or a News Media? [C]. In: Proceedings of the 19th International Conference on World Wide Web. ACM, 2010: 591-600.
[20] Gouldner A W. The Norm of Reciprocity: A Preliminary Statement [J]. Journal of Social and Personal Relationships, 1960, 25(2): 161-178.
[21] Watts D J, Strogatz S H. Collective Dynamics of ‘Small-World' Networks [J]. Nature, 1998, 393(6684): 440-442.
[22] McPherson M, Smith-Lovin L, Cook J M. Birds of a Feather: Homophily in Social Networks [J]. Annual Review of Sociology, 2001, 27: 415-444.
[23] Huang H, Tang J, Wu S, et al. Mining Triadic Closure Patterns in Social Networks[C]. In: Proceedings of the 23rd International Conference on World Wide. International World Wide Web Conferences Steering Committee, 2014: 499-504.
[24] Easley D, Kleinberg J. Networks, Crowds, and Markets: Reasoning About a Highly Connected World [M]. Cambridge University Press, 2010.Burt R S. Structural Holes: The Social Structure of Competition [M]. Harvard University Press, 2009.

[1] 曾庆田,胡晓慧,李超. 融合主题词嵌入和网络结构分析的主题关键词提取方法 *[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[2] 夏立新,曾杰妍,毕崇武,叶光辉. 基于LDA主题模型的用户兴趣层级演化研究 *[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[3] 杨宁, 黄飞虎, 文奕, 陈云伟. 基于微博用户行为的观点传播模型[J]. 现代图书情报技术, 2015, 31(12): 34-41.
[4] 余昕聪, 李红莲, 吕学强. 本体上下位关系在招生问答机器人中的应用研究[J]. 现代图书情报技术, 2015, 31(12): 65-71.
[5] 王政军, 俞小怡, 金玉玲. 利用旁路监听技术约束数字资源过量下载[J]. 现代图书情报技术, 2015, 31(12): 95-100.
[6] 刘占兵, 肖诗斌. 基于用户兴趣模糊聚类的协同过滤算法[J]. 现代图书情报技术, 2015, 31(11): 12-17.
[7] 伍万坤, 吴清烈, 顾锦江. 基于EM-LDA综合模型的电商微博热点话题发现[J]. 现代图书情报技术, 2015, 31(11): 33-40.
[8] 强韶华, 吴鹏. 地域性差异视角下的网站分类用户心智模型空间性研究[J]. 现代图书情报技术, 2015, 31(11): 68-74.
[9] 秦学东. 基于Drupal的KVM私有云管理系统解决方案[J]. 现代图书情报技术, 2015, 31(11): 91-95.
[10] 姜春涛. 自动标注中文专利的引文信息[J]. 现代图书情报技术, 2015, 31(10): 81-87.
[11] 王颖, 张智雄, 李传席, 刘毅, 汤怡洁, 周子健, 钱力, 付鸿鹄. 科技知识组织体系开放引擎系统的设计与实现[J]. 现代图书情报技术, 2015, 31(10): 95-101.
[12] 桂思思, 陆伟, 黄诗豪, 周鹏程. 融合主题模型及多时间节点函数的用户兴趣预测研究[J]. 现代图书情报技术, 2015, 31(9): 9-16.
[13] 秦晓慧, 乐小虬. 面向单篇文献引文网络的主题来源与走向追踪[J]. 现代图书情报技术, 2015, 31(9): 52-59.
[14] 邓启平, 王小梅. 利用LeaderRank识别有影响力的作者[J]. 现代图书情报技术, 2015, 31(9): 60-67.
[15] 郑海山. 图书馆数据中心基础架构部署自动化系统[J]. 现代图书情报技术, 2015, 31(9): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn