Please wait a minute...
Advanced Search
现代图书情报技术  2015, Vol. 31 Issue (11): 33-40    DOI: 10.11925/infotech.1003-3513.2015.11.06
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于EM-LDA综合模型的电商微博热点话题发现
伍万坤1, 吴清烈1, 顾锦江1,2
1 东南大学经济管理学院 南京 211189;
2 江苏经贸职业技术学院信息技术学院 南京 211168
Hot Topic Extraction from E-commerce Microblog Based on EM-LDA Integrated Model
Wu Wankun1, Wu Qinglie1, Gu Jinjiang1,2
1 School of Economics and Management, Southeast University, Nanjing 211189, China
2 Department of Information Technology, Jiangsu Institute of Commerce, Nanjing 211168, China
全文: PDF(620 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

[目的]在社交营销环境下, 准确且有效地挖掘电商微博中的热点话题。[方法]提出一种综合模型EM-LDA对电商微博文本数据进行主题挖掘。EM-LDA综合模型包含两个子模型: ET-LDA模型和IT-LDA模型, 前者对含有哈希标签的微博进行主题挖掘, 后者对不含有哈希标签的微博进行主题挖掘。[结果]在确定合适的主题个数之后, 标准LDA模型和EM-LDA综合模型均被用来挖掘电商微博文本数据的热点话题, 与标准LDA模型相比, EM-LDA综合模型的热词挖掘准确率和有效性均较高, 且能提高主题可解释性。[局限]在ET-LDA模型中, 未考虑微博联系人之间的关联关系, 即模型中未引入用户特征; 在IT-LDA模型中没有考虑如何处理那些既是转发式又是对话式的电商微博。[结论]EM-LDA综合模型根据数据的特点, 改进了标准LDA模型, 能够提升电商微博热点话题识别的准确性。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

[Objective] Extract hot topics from e-commerce microblog in social marketing.[Methods] This paper proposes an integrated model, EM-LDA (E-commerce Microblog-LDA) to extract hot topics from e-commerce microblog. The integrated model contains two submodels, that is, ET-LDA model and IT-LDA model. The former is to extract hot topics from those e-commerce microblog with Hashtag, and the latter is to extract hot topics from those e-commerce microblog without Hashtag.[Results] The standard LDA model and EM-LDA integrated model are both used to extract hot topics from e-commerce microblog text after the number of topics is determined. Compared with the standard LDA model, EM-LDA model extract hot topics more accurately and effectively, also can improve interpretability.[Limitations] ET-LDA model is not considered about the relationship between microblog contacts, that is, user feature is neglected. IT-LDA model does not concern how to deal with those e-commerce microblog both belong to conversation and retweet.[Conclusions] According to the special features of e-commerce microblog text, EM-LDA integrated model ameliorates the standard LDA model to improve the accuracy of hot topic extraction from e-commerce microblog.

收稿日期: 2015-05-27     
:  TP393  
  G356  
基金资助:

本文系江苏省高校哲学与社会科学重点项目“江苏网络经济发展现状与对策研究”(项目编号:2013ZDIXM017)的研究成果之一。

通讯作者: 伍万坤, ORCID: 0000-0002-7872-6536, E-mail: wuwankunseu@qq.com。     E-mail: wuwankunseu@qq.com
作者简介: 作者贡献声明:伍万坤: 文献调研, 细化研究方向及技术方法路线, 提出改进的ET-LDA模型, 设计实验方案, 清洗数据, 实验结果分析, 论文撰写与最终版本修订; 吴清烈: 提出论文研究方向和思路, 设计研究方案及技术路线, 建立IT-LDA模型, 修改文章; 顾锦江: 数据采集、编程及实验结果分析, 修改文章。
引用本文:   
伍万坤, 吴清烈, 顾锦江. 基于EM-LDA综合模型的电商微博热点话题发现[J]. 现代图书情报技术, 2015, 31(11): 33-40.
Wu Wankun, Wu Qinglie, Gu Jinjiang. Hot Topic Extraction from E-commerce Microblog Based on EM-LDA Integrated Model. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2015.11.06.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2015.11.06

[1] Wei X, Croft W B. LDA-based Document Models for Ad-hoc Retrieval [C]. In: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2006: 178-185.
[2] 张晨逸, 孙建伶, 丁轶群. 基于MB-LDA模型的微博主题挖掘[J]. 计算机研究与发展, 2011, 48(10): 1795-1802. (Zhang Chenyi, Sun Jianling, Ding Yiqun. Topic Mining for Microblog Based on MB-LDA Model [J]. Journal of Computer Research and Development, 2011, 48(10): 1795-1802.)
[3] 张晓艳, 王挺, 梁晓波. LDA模型在话题追踪中的应用[J]. 计算机科学, 2011, 38(10A): 136-139, 152. (Zhang Xiaoyan, Wang Ting, Liang Xiaobo. Use of LDA Model in Topic Tracking [J]. Computer Science, 2011, 38(10A): 136-139, 152.)
[4] 张培晶, 宋蕾. 基于LDA的微博文本主题建模方法研究述评[J]. 图书情报工作, 2012, 56(24): 120-126. (Zhang Peijing, Song Lei. Overview on Topic Modeling of Microblogs Text Based on LDA [J]. Library and Information Service, 2012, 56(24): 120-126.)
[5] Weng J, Lim E P, Jiang J, et al. TwitterRank: Finding Topic-sensitive Influential Twitterers [C]. In: Proceedings of the 3rd ACM International Conference on Web Search and Data Mining. ACM, 2010: 261-270.
[6] Hong L, Davison B D. Empirical Study of Topic Modeling in Twitter [C]. In: Proceedings of the 1st Workshop on Social Media Analytics. ACM, 2010: 80-88.
[7] Rosen-Zvi M, Griffiths T, Steyvers M, et al. The Author-topic Model for Authors and Documents [C]. In: Proceedings of the 20th Conference on Uncertainty in Artificial Intelligence. AUAI Press, 2004: 487-494.
[8] Zhao W X, Jiang J, Weng J, et al. Comparing Twitter and Traditional Media Using Topic Models [C]. In: Proceedings of the 33rd European Conference on Informatin Retrieval. Springer Berlin Heidelberg, 2011: 338-349.
[9] Ramage D, Hall D, Nallapati R, et al. Labeled LDA: A Supervised Topic Model for Credit Attribution in Multi-labeled Corpora [C]. In: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. 2009: 248-256.
[10] 唐晓波, 向坤. 基于LDA模型和微博热度的热点挖掘[J]. 图书情报工作, 2014, 58(5): 58-63. (Tang Xiaobo, Xiang Kun. Hotspot Mining Based on LDA Model and Microblog Heat [J]. Library and Information Service, 2014, 58(5): 58-63.)
[11] 朱颖. 基于微博的热点话题发现[D]. 重庆: 西南大学, 2014. (Zhu Ying. Hot Topic Extraction from Microblogs [D]. Chongqing: Southwest University, 2014.)
[12] Blei D M, Ng A Y, Jordan M I. Latent Dirichlet Allocation [J]. Journal of Machine Learning Research, 2003, 3: 993-1022.
[13] Rosen-Zvi M, Chemudugunta C, Griffiths T, et al. Learning Author-topic Models from Text Corpora [J]. ACM Transactions on Information Systems, 2010, 28(1): Article No.4.
[14] Zhao W X, Jiang J, He J, et al. Topical Keyphrase Extraction from Twitter [C]. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics. 2011: 379-388.
[15] Ramage D, Dumais S T, Liebling D J. Characterizing Microblogs with Topic Models [C]. In: Proceedings of the 4th International Conference on Weblogs and Social Media. 2010.
[16] 王星. 大数据分析: 方法与应用[M]. 北京: 清华大学出版社, 2013: 287-289. (Wang Xing. Big Data Analysis: Methods and Applications [M]. Beijing: Tsinghua University Press, 2013: 287-289.)
[17] 数据堂. 50条热门微博的所有转发和评论[EB/OL]. [2015-03-29]. http://www.datatang.com/data/46423. (Datatang. All Retweets and Comments of 50 Hot Microblogs [EB/OL]. [2015-03-29]. http://www.datatang.com/data/46423.)
[18] 数据堂. 63641个用户的新浪微博数据集[EB/OL]. [2015-03-30]. http://www.datatang.com/data/46758. (Datatang. Sina Microblog Datasets of 63641 Users [EB/OL]. [2015-03-30]. http://www.datatang.com/data/46758.)
[19] Toyabe T, Asai S. Analytical Models of Threshold Voltage and Breakdown Voltage of Short-channel MOSFET's Derived from Two-dimensional Analysis [J]. IEEE Transactions on Electron Devices, 1979, 26(4): 453-461.
[20] Cao J, Xia T, Li J, et al. A Density-based Method for Adaptive LDA Model Selection [J]. Neurocomputing, 2009, 72(7-9): 1775-1781.

[1] 曾庆田,胡晓慧,李超. 融合主题词嵌入和网络结构分析的主题关键词提取方法 *[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[2] 夏立新,曾杰妍,毕崇武,叶光辉. 基于LDA主题模型的用户兴趣层级演化研究 *[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[3] 杨宁, 黄飞虎, 文奕, 陈云伟. 基于微博用户行为的观点传播模型[J]. 现代图书情报技术, 2015, 31(12): 34-41.
[4] 余昕聪, 李红莲, 吕学强. 本体上下位关系在招生问答机器人中的应用研究[J]. 现代图书情报技术, 2015, 31(12): 65-71.
[5] 王政军, 俞小怡, 金玉玲. 利用旁路监听技术约束数字资源过量下载[J]. 现代图书情报技术, 2015, 31(12): 95-100.
[6] 刘占兵, 肖诗斌. 基于用户兴趣模糊聚类的协同过滤算法[J]. 现代图书情报技术, 2015, 31(11): 12-17.
[7] 强韶华, 吴鹏. 地域性差异视角下的网站分类用户心智模型空间性研究[J]. 现代图书情报技术, 2015, 31(11): 68-74.
[8] 秦学东. 基于Drupal的KVM私有云管理系统解决方案[J]. 现代图书情报技术, 2015, 31(11): 91-95.
[9] 吴江, 张劲帆. 社会网络三元结构中关注影响力研究——以学生关系网络为例[J]. 现代图书情报技术, 2015, 31(10): 72-80.
[10] 姜春涛. 自动标注中文专利的引文信息[J]. 现代图书情报技术, 2015, 31(10): 81-87.
[11] 王颖, 张智雄, 李传席, 刘毅, 汤怡洁, 周子健, 钱力, 付鸿鹄. 科技知识组织体系开放引擎系统的设计与实现[J]. 现代图书情报技术, 2015, 31(10): 95-101.
[12] 桂思思, 陆伟, 黄诗豪, 周鹏程. 融合主题模型及多时间节点函数的用户兴趣预测研究[J]. 现代图书情报技术, 2015, 31(9): 9-16.
[13] 秦晓慧, 乐小虬. 面向单篇文献引文网络的主题来源与走向追踪[J]. 现代图书情报技术, 2015, 31(9): 52-59.
[14] 邓启平, 王小梅. 利用LeaderRank识别有影响力的作者[J]. 现代图书情报技术, 2015, 31(9): 60-67.
[15] 郑海山. 图书馆数据中心基础架构部署自动化系统[J]. 现代图书情报技术, 2015, 31(9): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn