Please wait a minute...
Advanced Search
现代图书情报技术  2015, Vol. 31 Issue (11): 68-74    DOI: 10.11925/infotech.1003-3513.2015.11.10
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
地域性差异视角下的网站分类用户心智模型空间性研究
强韶华1, 吴鹏2
1 南京工业大学经济与管理学院 南京 211816;
2 南京理工大学经济管理学院 南京 210094
The Research of Spatial Measure of Users' Mental Model of Website Category from the View of Regional Differences
Qiang Shaohua1, Wu Peng2
1 School of Economics and Management, Nanjing TECH University, Nanjing 211816, China;
2 School of Economics and Management, Nanjing University of Science & Technology, Nanjing 210094, China
全文: PDF(569 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

[目的]根据地域差异, 发现和验证网站分类目录的组织结构与用户主观认知的相似性特征, 支持网站个性化设置。[方法]结合心智模型理论和日志挖掘方法, 利用网站日志数据获取用户认知, 利用多维尺度法分析不同地域用户期望的网站分类目录心智模型差异。[结果]结合案例网站提供的数据进行实证研究, 验证结果显示不同地域用户的心智模型存在差异。[局限]试验数据较少, 需要更多同类数据的验证。[结论]不同地域的用户对网站的分类目录具有不同的心智模型, 可以进行个性化的目录体系设置, 以更符合用户的使用习惯, 提高用户满意度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

[Objective] This paper is to analyze the similarity between the organization structure of the website category and the user's subjective cognition directly based on the view of regional differences, which can support the website personalization.[Methods] Combined with the mental model theory and Web log mining method, this paper uses the website log data to obtain the user's cognition, and uses the multidimensional scaling to analyze the user's mental models of expected website category hierarchy from different regions.[Results] It is verified that there are differences in the mental models of the user's from different regions based on a Chinese e-commerce website case.[Limitations] In this paper, the test data is relatively small, and the new method needs to be verified by the more data.[Conclusions] The users' mental models of expected website category hierarchy are different according different regions. We can set up a personalized category hierarchy for users of different regions, which can better meet their use habits and improve their customer satisfactions.

收稿日期: 2015-05-22     
:  TP393  
  G35  
基金资助:

本文系中央高校基本科研业务专项资金“移动互联网服务使用偏好学习机制研究”(项目编号:30920140111006)和江苏省高校哲学社会科学研究项目“基于用户行为的网站信息共享中隐私权保护研究”(项目编号:2012SJB870004)的研究成果之一。

通讯作者: 强韶华, ORCID: 0000-0001-7797-3554, E-mail: Shaohua3900@163.com。     E-mail: Shaohua3900@163.com
作者简介: 作者贡献声明:强韶华, 吴鹏: 提出研究思路, 设计研究方案; 强韶华: 进行实验; 强韶华: 采集、清洗和分析数据; 强韶华, 吴鹏: 论文起草; 强韶华: 论文最终版本修订。
引用本文:   
强韶华, 吴鹏. 地域性差异视角下的网站分类用户心智模型空间性研究[J]. 现代图书情报技术, 2015, 31(11): 68-74.
Qiang Shaohua, Wu Peng. The Research of Spatial Measure of Users' Mental Model of Website Category from the View of Regional Differences. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2015.11.10.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2015.11.10

[1] Geng X, Fan X, Bian J, et al. Optimizing User Exploring Experience in Emerging e-Commerce Products [C]. In: Proceedings of the 21st International Conference on World Wide Web. 2012: 23-32.
[2] Chen M, LaPaugh A S, Singh J P. Predicting Category Accesses for a User in a Structured Information Space[C]. In:Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. ACM, 2002: 65-72.
[3] Schmutz P, Roth S P, Seckler M, et al. Designing Product Listing Pages—Effects on Sales and Users' Cognitive Workload [J]. International Journal of Human-Computer Studies, 2010, 68(7): 423-431.
[4] Noseworthy T J, Goode M R. Contrasting Rule-based and Similarity-based Category Learning: The Effects of Mood and Prior Knowledge on Ambiguous Categorization [J]. Journal of Consumer Psychology, 2011, 21(3): 362-371.
[5] Norman D A. Some Observations on Mental Models [A]. //Mental Models [M]. Lawrence Erlbaum Associates Inc, 1983: 7-14.
[6] 尤少伟, 吴鹏, 汤丽娟, 等. 基于路径搜索法的政府网站分类目录用户心智模型研究——以南京市政府网站为例[J]. 图书情报工作, 2012, 56(9): 129-135. (You Shaowei, Wu Peng, Tang Lijuan, et al. Users' Mental Model about Government Website Classification Catalogue Based on Pathfinder Method — Taking Nanjing Government Website as an Example [J]. Library and Information Service, 2012, 56(9): 129-135.)
[7] 李海涛, 宋琳琳. 用户使用网站的心智模型测量方法的选择及应用[J]. 情报理论与实践, 2015, 38(2): 11-16. (Li Haitao, Song Linlin. The Choice and Application of the Measuring Method of the User's Mental Model [J]. Information Studies: Theory & Application, 2015, 38(2): 11-16.)
[8] 张丽军. 基于日志挖掘的网站分类目录用户心智模型研究[D]. 南京: 南京理工大学, 2014. (Zhang Lijun. Research on Website Product Category Based on Mental Model by Data Mining [D]. Nanjing: Nanjing University of Science & Technolgoy, 2014.)
[9] 钱敏. 面向网站商品分类目录的用户心智模型测量研究[D]. 南京: 南京理工大学, 2013. (Qian Min. Research on the Measuring Method of the User's Mental Model Based on the Web Product Catalog [D]. Nanjing: Nanjing University of Science & Technolgoy, 2013.)
[10] Smith E E, Shoben E J, Rips L J. Structure and Process in Semantic Decisions: A Featural Model for Semantic Decisions [J]. Psychological Review, 1974, 81(3): 214-241.
[11] Gärdenfors P. Conceptual Spaces: The Geometry of Thought [M]. Cambridge, Mass: MIT Press, 2004.
[12] Nosofsky R M. Choice, Similarity, and the Context Theory of Classification [J]. Journal of Experimental Psychology: Learning, Memory, & Cognition, 1984, 10(1): 104-114.
[13] Ashby F G, Gott R E. Decision Rules in the Perception and Categorization of Multidimensional Stimuli [J]. Journal of Experimental Psychology: Learning, Memory, & Cognition, 1988, 14(1): 33-53.
[14] 吴鹏, 强韶华, 严明. 基于多维尺度法的网站分类目录理解用户心智模型空间性测量研究: 以政府网站为例[J]. 情报学报, 2012, 31(4): 436-448. (Wu Peng, Qiang Shaohua, Yan Ming. The Research on Spatial Measure of Users' Mental Model for Understanding Website Categories Based on Multidimensional Scaling: The Case of Government Websites [J]. Journal of the China Society for Scientific and Technical Information, 2012, 31(4): 436-448.)
[15] Coury B G, Weiland M Z, Cuqlock-Knopp V G. Probing the Mental Models of System State Categories with Multidi­mensional Scaling [J]. International Journal of Man-Machine Studies, 1992, 36(5): 673-696.

[1] 曾庆田,胡晓慧,李超. 融合主题词嵌入和网络结构分析的主题关键词提取方法 *[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[2] 夏立新,曾杰妍,毕崇武,叶光辉. 基于LDA主题模型的用户兴趣层级演化研究 *[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[3] 杨宁, 黄飞虎, 文奕, 陈云伟. 基于微博用户行为的观点传播模型[J]. 现代图书情报技术, 2015, 31(12): 34-41.
[4] 余昕聪, 李红莲, 吕学强. 本体上下位关系在招生问答机器人中的应用研究[J]. 现代图书情报技术, 2015, 31(12): 65-71.
[5] 王政军, 俞小怡, 金玉玲. 利用旁路监听技术约束数字资源过量下载[J]. 现代图书情报技术, 2015, 31(12): 95-100.
[6] 刘占兵, 肖诗斌. 基于用户兴趣模糊聚类的协同过滤算法[J]. 现代图书情报技术, 2015, 31(11): 12-17.
[7] 伍万坤, 吴清烈, 顾锦江. 基于EM-LDA综合模型的电商微博热点话题发现[J]. 现代图书情报技术, 2015, 31(11): 33-40.
[8] 秦学东. 基于Drupal的KVM私有云管理系统解决方案[J]. 现代图书情报技术, 2015, 31(11): 91-95.
[9] 吴江, 张劲帆. 社会网络三元结构中关注影响力研究——以学生关系网络为例[J]. 现代图书情报技术, 2015, 31(10): 72-80.
[10] 姜春涛. 自动标注中文专利的引文信息[J]. 现代图书情报技术, 2015, 31(10): 81-87.
[11] 王颖, 张智雄, 李传席, 刘毅, 汤怡洁, 周子健, 钱力, 付鸿鹄. 科技知识组织体系开放引擎系统的设计与实现[J]. 现代图书情报技术, 2015, 31(10): 95-101.
[12] 桂思思, 陆伟, 黄诗豪, 周鹏程. 融合主题模型及多时间节点函数的用户兴趣预测研究[J]. 现代图书情报技术, 2015, 31(9): 9-16.
[13] 秦晓慧, 乐小虬. 面向单篇文献引文网络的主题来源与走向追踪[J]. 现代图书情报技术, 2015, 31(9): 52-59.
[14] 邓启平, 王小梅. 利用LeaderRank识别有影响力的作者[J]. 现代图书情报技术, 2015, 31(9): 60-67.
[15] 郑海山. 图书馆数据中心基础架构部署自动化系统[J]. 现代图书情报技术, 2015, 31(9): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn