Please wait a minute...
Advanced Search
现代图书情报技术  2015, Vol. 31 Issue (12): 21-27    DOI: 10.11925/infotech.1003-3513.2015.12.04
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
数字文献资源内容服务推荐方法研究
毕强, 刘健
吉林大学管理学院 长春 130022
Research on the Service Recommendation of the Content of Digital Literature Resources
Bi Qiang, Liu Jian
School of Management, Jilin University, Changchun 130022, China
全文: PDF(2670 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

[目的]解决传统数字文献资源内容服务推荐中, 无法充分挖掘用户潜在信息需求以及评分矩阵稀疏问题。[方法]利用关联语义链和协同过滤算法提出数字文献资源内容服务推荐算法。[结果]实验结果证明, 该算法可以克服单一推荐算法中存在的无法挖掘用户潜在信息需求以及评分矩阵稀疏问题。[局限]缺少对数字资源的大规模采集, 实验案例较少。[结论]该算法充分挖掘用户信息需求并产生数字资源推荐信息, 为数字资源服务提供商提高用户感知的能力, 增强资源服务推荐的准确性和针对性提供了一种新途径。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

[Objective] Service recommendation of the content of traditional digital literature resources is unable to fully exploit the user potential information demand and the ratings matrixes are always sparse. This paper provides an algorithm using collaborative filtering algorithm and association semantic link. [Methods] A recommendation algorithm for the content of digital literature resources is proposed by using the association semantic link and collaborative filtering algorithm. [Results] The experimental result shows that the algorithm can overcome the problems of the potential information needs of the users and the sparsity of the matrix. [Limitations] Lack of large-scale collection of digital resources, and the experimental cases are few. [Conclusions] The algorithm can fully exploit the users' information demand and generate the literature recommendation information. Finally, the validity and practicability of the proposed algorithm are verified by experiments.

收稿日期: 2015-07-06     
:  G250.7  
基金资助:

本文系国家自然科学基金项目“语义网络环境下数字图书馆资源多维度聚合与可视化展示研究”(项目编号:71273111)的研究成果之一。

通讯作者: 刘健, ORCID: 0000-0001-8901-2814, E-mail: tomosliu9999@126.com。     E-mail: tomosliu9999@126.com
作者简介: 作者贡献声明:毕强: 提出研究方向, 设计研究方法; 刘健: 设计算法, 实验及分析, 论文撰写。
引用本文:   
毕强, 刘健. 数字文献资源内容服务推荐方法研究[J]. 现代图书情报技术, 2015, 31(12): 21-27.
Bi Qiang, Liu Jian. Research on the Service Recommendation of the Content of Digital Literature Resources. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2015.12.04.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2015.12.04

[1] 马炎. 一种自适应的协作过滤图书推荐系统研究[J]. 情报杂志, 2008, 27(5): 105-106, 109. (Ma Yan. Research on the Adaptive Collaborative Filtering Recommendation System [J]. Journal of Information, 2008, 27(5): 105-106, 109.)
[2] 董坤. 基于协同过滤算法的高校图书馆图书推荐系统研究[J]. 现代图书情报技术, 2011(11): 44-47. (Dong Kun. Research of Personalized Book Recommender System of University Library Based on Collaborative Filter [J]. New Technology of Library and Information Service, 2011(11): 44-47.)
[3] 吴志强, 马慧娟. 协同信息推荐技术及其在数字图书馆中的应用研究述评[J]. 图书情报工作, 2012, 56(19): 122-127. (Wu Zhiqiang, Ma Huijuan. Review on Researches About the Application of Collaborative Information Recommendation Technologies in Digital Libraries [J]. Library and Information Service, 2012, 55(19): 122-127.)
[4] 熊拥军. 数字图书馆个性化服务资源推荐模式分析[J]. 图书馆, 2014(2): 132-134. (Xiong Yongjun. The Model Analysis of Personalized Information Recommendation Service in Digital Library [J]. Library, 2014(2): 132-134.)
[5] Koren Y, Bell R, Volinsky C. Matrix Factorization Techniques for Recommender Systems [J]. Computer, 2009, 42 (8): 30-37.
[6] Ghazarian S, Nematbakhsh M A. Enhancing Memory-based Collaborative Filtering for Group Recommender Systems Original Research Article [J]. Expert Systems with Applications, 2015, 42(7): 3801-3812.
[7] Zhu Z, Wang J Y. Book Recommendation Service by Improved Association Rule Mining Algorithm [C]. In: Proceedings of the 6th International Conference on Machine Learning and Cybernetics, Hong Kong, China. 2007: 19-22.
[8] Lopes G R, Souto M A M, Wives L K, et al. A Personalized Recommender System for Digital Libraries [C]. In: Proceedings of the 14th Brazilian Symposium on Multimedia and the Web, Brazil. 2008: 59-66.
[9] Amini B, Ibrahim R, Othman M S, et al. Incorporating Scholar's Background Knowledge into Recommender System for Digital Libraries [C]. In: Proceedings of the 5th Malaysian Conference in Software Engineering (MySEC). 2011: 516-523.
[10] Will T, Srinivasan A, Im I, et al. Search Personalization: Knowledge-Based Recommendation in Digital Libraries[C]. In: Proceedings of the 15th Americas Conference on Information Systems. 2009: 728-735.
[11] 杨杰. 个性化推荐系统应用及研究[D]. 合肥: 中国科学技术大学, 2009. (Yang Jie. Application and Research of Personalized Recommender Systems [D]. Hefei: University of Science and Technology of China, 2009.)
[12] 赵琴琴, 鲁凯, 王斌. SPCF 基于内存的传播式协同过滤推荐算法[J]. 计算机学报, 2013, 36(3): 671-672. (Zhao Qinqin, Lu Kai, Wang Bin. SPCF: A Memory Based Collaborative Filtering Algorithm via Propagation [J]. Chinese Journal of Computers, 2013, 36(3): 671-672.)
[13] 贾丽会, 张修如. BP算法分析与改进[J]. 计算机技术与发展, 2006, 16(10): 101-103. (Jia Lihui, Zhang Xiuru. Analysis and Improvements of BP Algorithm [J]. Computer Technology and Development, 2006, 16(10): 101-103.)
[14] Jung K Y. User Preference Through Bayesian Categorization for Recommendation [C]. In: Proceedings of the 9th Pacific Rim International Conference on Artificial Intelligence, Guilin, China. 2006: 112-119.
[15] 任磊. 推荐系统关键技术研究[D]. 上海: 华东师范大学, 2012. (Ren Lei. Research on Some Key Issues of Recommender Systems [D]. Shanghai: East China Normal University, 2012.)
[16] Chedrawy Z, Abidi S S R. An Adaptive Personalized Recommendation Strategy Featuring Context Sensitive Content Adaptation [C]. In: Proceedings of the 4th International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems. 2006: 61-70.
[17] 李静云. 基于用户情境感知的移动图书馆知识推荐系统设计[J]. 图书馆理论与实践, 2013(6): 19-21. (Li Jingyun. Design of Knowledge Recommender System Based-on Users' Context-aware for Mobile Library [J]. Library Theory and Practice, 2013(6): 19-21.)
[18] Hai Z, Zheng L. Ranking Semantic-linked Network [C]. In: Proceedings of the 12th International Conference on World Wide Web. 2003: 114-117.
[19] 徐峥. 大规模网络资源环境下关联语义链网络模型及其应用研究[D]. 上海: 上海大学, 2012. (Xu Zheng. Building Association Link Network for Managing Large Scale Web Resources [D]. Shanghai: Shanghai University, 2012.)
[20] 刘飞飞. 基于多目标优化双聚类的数字图书馆协同过滤推荐系统[J]. 图书情报工作, 2011, 55(7): 111-113. (Liu Feifei. Digital Library Collaborative Filtering Recommendation System Based on Multiobjective Evolutionary Biclustering [J]. Library and Information Service, 2011, 55(7): 111-113.)
[21] 马丽. 基于群体兴趣偏向度的数字图书馆协同过滤技术研究[J]. 现代图书情报技术, 2007(10): 19-22. (Ma Li. Study on Digital Library Collaborative Filtering Technology Based on Group Interest Trend Degree [J]. New Technology of Library and Information Service, 2007(10): 19-22.)
[22] 黄晓斌. 基于协同过滤的数字图书馆推荐系统研究[J]. 大学图书馆学报, 2006, 24(1): 53-57. (Huang Xiaobin. A Study on the Digital Library Recommender System base on Collaborartive Filtering [J]. Journal of Academic Libraries, 2006, 24(1): 53-57. )
[23] 李沛东. 基于语用情境的资源推荐研究及应用[D]. 重庆: 重庆大学, 2011. (Li Peidong. Research and Application of Resource Recommendation base on Pragmatics Context [D]. Chongqing: Chongqing University, 2011.)
[24] Goldberg K, Toeder T, Gupta D, et al. Eigentaste: A Constant Time Collaborative Filtering Algorithm [J]. Information Retrieval, 2001, 4(2): 133-151.
[25] Zhou T, Kuscsik Z, Liu J G, et al. Solving the Apparent Diversity-accuracy Dilemma of Recommender Systems [J]. Proceedings of the National Academy of Sciences, 2010, 107(10): 4511-4517.
[26] Lemire D, Maclachlan A. Slope One Predictors for Online Rating Based Collaborative Filtering [C]. In: Proceedings of the 2005 SIAM International Conference on Data Mining. 2005: 471-475.
[27] Liu N N, Qiang Y. Eigenrank: A Ranking-oriented Approach to Collaborative Filtering [C]. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research & Development on Information Retrieval. 2008: 83-90.

[1] 孙轶楠, 顾立平, 宋秀芳, 刘晶晶, 江娴. 学科数据知识库的政策调研与分析——以生命科学领域为例[J]. 现代图书情报技术, 2015, 31(12): 13-20.
[2] 朱光. 基于零水印的图博档彩色图像资源版权保护策略研究[J]. 现代图书情报技术, 2015, 31(12): 89-94.
[3] 刘悦如, 郭利敏. 微信公众号互动功能新开发[J]. 现代图书情报技术, 2015, 31(11): 104-109.
[4] 刘丹. 利用Apache Mahout部署个性化图书推荐服务[J]. 现代图书情报技术, 2015, 31(10): 102-108.
[5] 郭振英, 赵文兵, 魏育辉. 轻量级书目本体关联数据建设实践[J]. 现代图书情报技术, 2015, 31(7-8): 139-143.
[6] 郭利敏, 刘悦如, 相明琼. 微信二维码用于图书馆读者身份认证的实践[J]. 现代图书情报技术, 2015, 31(7-8): 144-147.
[7] 李丹, 闫晓弟, 魏青山. Drupal数据采集在构建特色数字资源中的实践[J]. 现代图书情报技术, 2015, 31(7-8): 148-154.
[8] 周瑶, 刘畅, 李建东. 图书馆微信座位预约应用开发——以西北民族大学为例[J]. 现代图书情报技术, 2015, 31(7-8): 155-159.
[9] 师洪波, 钱力, 张晓林, 梁娜. 开放获取论文推送转发服务系统iSwitch:论文接收与解析[J]. 现代图书情报技术, 2015, 31(6): 1-6.
[10] 王颖, 吴振新, 谢靖. 面向科技文献的语义检索系统研究综述[J]. 现代图书情报技术, 2015, 31(5): 1-7.
[11] 白海燕, 刘耀, 郭晓峰. 新型责任者标识系统ORCID的构建机制介绍[J]. 现代图书情报技术, 2015, 31(5): 8-14.
[12] 王孝亮, 胡军. 图书馆自助毕业清证协同处理系统的设计与实现[J]. 现代图书情报技术, 2015, 31(4): 96-102.
[13] 鲁晓明. 基于GimbalTM的轻量级高校图书馆情景感知推送服务平台开发及试验[J]. 现代图书情报技术, 2015, 31(3): 101-107.
[14] 顾嘉伟, 王胜清, 赵丹群, 陈文广. 公共文化数字资源云服务的一种中心化身份认证模式[J]. 现代图书情报技术, 2015, 31(2): 64-71.
[15] 孙伟, 郝爱语, 吕强. 位置映射技术在图书定位与导航中的应用[J]. 现代图书情报技术, 2015, 31(2): 85-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn