Please wait a minute...
Advanced Search
现代图书情报技术  2015, Vol. 31 Issue (12): 34-41    DOI: 10.11925/infotech.1003-3513.2015.12.06
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于微博用户行为的观点传播模型
杨宁1, 黄飞虎2, 文奕1, 陈云伟1
1 中国科学院成都文献情报中心 成都 610041;
2 四川大学计算机学院 成都 610065
An Opinion Evolution Model Based on the Behavior of Micro-blog Users
Yang Ning1, Huang Feihu2, Wen Yi1, Chen Yunwei1
1 Chengdu Document and Information Center, Chinese Academy of Sciences, Chengdu 610041, China;
2 College of Computer Science, Sichuan University, Chengdu 610065, China
全文: PDF(2270 KB)   HTML  
输出: BibTeX | EndNote (RIS)      
摘要 

[目的]探讨微博网络中基于用户行为的信息传播模型。[方法]对微博网络中用户的三种行为(发布、评论、转发)进行分析, 并用敏感度和活跃度对用户获取信息和参与讨论的积极程度进行刻画。在此基础上, 提出一个新的观点传播模型。在NetLogo平台上进行计算机模拟, 讨论模型参数对观点传播和演化的影响。[结果]信任阈值对用户的观点趋向具有影响。敏感度对网络中信息的传播具有促进作用。活跃度可以加快信息的传播, 也对观点达到稳定的时间具有促进作用。[局限]目前观点动力学研究主要以理论分析和实验为主, 因此本模型还需要扩大数据规模以验证理论模型的适应性。[结论]模型以微博用户行为为基础, 能够描述微博网络中复杂的信息传播及观点更新现象。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
Abstract

[Objective] Explore an opinion evolution model based on the information dissemination of micro-blog. [Methods] Analyzing three kinds of user behavior in the micro-blog network (including publishing, review, forwarding), this paper proposes a new opinion evolution model, which introduces the concept of Sensitivity and Activity to measure user's enthusiasm for getting new information and discussing with others. Based on the NetLogo platform, this paper discusses the influence of the parameters on the result of evolution firstly, and then contrasts with HK model by computer simulation. [Results] The trust threshold has the effect on the user's opinion. Sensitivity has a promotion effect on the communication of information. Activity can speed up the dissemination of information and promote user's opinion to be stable. [Limitations] At present, the research of the opinion dynamics is mainly based on the theoretical analysis and the experiment, so the model also need to expand data size to verify the adaptability of the theoretical model. [Conclusions] The presented model is based on the behavior of micro-blog users. The experimental results show that the model can describe the complex information dissemination and the update of the opinion in the micro-blog network.

收稿日期: 2015-05-13     
:  TP393  
  G35  
基金资助:

本文系中国科学院“西部之光”人才培养计划“引文耦合网络演化分析及在科技评价与预测中的应用研究”(项目编号:科发人字〔2013〕165号 (3-6))的研究成果之一。

通讯作者: 黄飞虎, ORCID: 0000-0002-2666-4222, E-mail: hd808080@126.com。     E-mail: hd808080@126.com
作者简介: 作者贡献声明:杨宁, 黄飞虎: 提出研究思路, 设计研究方案, 进行实验, 论文起草及最终版本修订; 文奕, 陈云伟: 采集、清洗数据。
引用本文:   
杨宁, 黄飞虎, 文奕, 陈云伟. 基于微博用户行为的观点传播模型[J]. 现代图书情报技术, 2015, 31(12): 34-41.
Yang Ning, Huang Feihu, Wen Yi, Chen Yunwei. An Opinion Evolution Model Based on the Behavior of Micro-blog Users. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2015.12.06.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2015.12.06

[1] 顾亦然, 夏玲玲. 在线社交网络中谣言的传播与抑制[J]. 物理学报, 2012, 61(23): 544-550. (Gu Yiran, Xia Lingling. The Propagation and Inhibition of Rumors in Online Social Network [J]. Acta Physica Sinica, 2012, 61(23): 544-550.)
[2] Wu M, Guo J, Zhang C, et al. Social Media Communication Model Research Bases on Sina-weibo [C]. In: Proceedings of the 6th International Conference on Intelligent Systems and Knowledge Engineering, Shanghai, China. 2011.
[3] 黄飞虎, 彭舰, 宁黎苗. 基于信息熵的社交网络观点演化模型[J]. 物理学报, 2014, 63(16):12-20. (Huang Feihu, Peng Jian, Ning Limiao. Opinion Evolution Model of Social Network Based on Information Entropy [J]. Acta Physica Sinica, 2014, 63(16): 12-20.)
[4] Ding F, Liu Y. Modeling Opinion Interactions in a BBS Community [J]. European Physical Journal B, 2010, 78(2): 245-252.
[5] 王晶, 朱珂, 汪斌强. 基于用户社会属性及行为特征吸引度的微博粉丝网络演化模型[J]. 计算机应用, 2013, 33(10): 2753-2756, 2761. (Wang Jing, Zhu Ke, Wang Binqiang. Microblog Fans Network Evolving Model Based on User Social Characteristics and Attractiveness of Behavior Properties [J]. Journal of Computer Applications, 2013, 33(10): 2753-2756, 2761.)
[6] 胡海波, 王科, 徐玲, 等. 基于复杂网络理论的在线社会网络分析[J]. 复杂系统与复杂性科学, 2008, 5(2): 1-14. (Hu Haibo, Wang Ke, Xu Ling, et al. Analysis of Online Social Networks Based on Complex Network Theory [J]. Complex Systems and Complexity Science, 2008, 5(2): 1-14.)
[7] 闫强, 吴联仁, 郑兰. 微博社区中用户行为特征及其机理研究[J]. 电子科技大学学报, 2013, 42(3): 328-333. (Yan Qiang, Wu Lianren, Zheng Lan. Research on User Behavior Characters and Mechanism in Microblog Communities [J]. Journal of University of Electronic Science and Technology of China, 2013, 42(3): 328-333.)
[8] Yu L, Asur S, Huberman B A. What Trends in Chinese Social Media [C]. In: Proceedings of the 5th International Workshop on Social Network Mining and Analysis (SNA-KDD), San Diego, CA, USA. 2011.
[9] 樊兴华, 赵静, 方滨兴, 等. 影响力扩散概率模型及其用于意见领袖发现研究[J]. 计算机学报, 2013, 36(2): 360-367. (Fan Xinghua, Zhao Jing, Fang Binxing, et al. Influence Diffusion Probability Model and Utilizing It to Identify Network Opinion Leader [J]. Chinese Journal of Computers, 2013, 36(2): 360-367.)
[10] Leskovec J, Backstrom L, Kleinberg J. Meme-tracking and the Dynamics of the News Cycle [C]. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2009:497-506.
[11] 陈慧娟, 郑啸, 陈欣. 微博网络信息传播研究综述[J]. 计算机应用研究, 2014, 31(2): 333-338. (Chen Huijuan, Zheng Xiao, Chen Xin. Survey on Information Diffusion in Microblog [J]. Application Research of Computers, 2014, 31(2): 333-338.)
[12] Lee S H, Kim P J, Jeong H. Statistical Properties of Sampled Networks [J]. Physical Review E, 2006, 73(1): Article No. 016102.
[13] 李勇军. 在线社交网络的拓扑特性分析[J]. 复杂系统与复杂性科学, 2012, 9(3): 22-37. (Li Yongjun. Analysis on Topological Features of Online Social Networks [J]. Complex Systems and Complexity Science, 2012, 9(3): 22-37.)
[14] 周而重, 钟宁, 黄佳进. 基于意见领袖引导作用的网络舆论演化研究[J]. 计算机科学, 2013, 40(11): 287-290. (Zhou Erzhong, Zhong Ning, Huang Jiajin. Research on Evolution of Online Consensus Based on Opinion Leader's Guiding Role [J]. Computer Science, 2013, 40(11): 287-290.)
[15] 丁雪峰, 胡勇, 赵文, 等. 网络舆论意见领袖特征研究[J]. 四川大学学报: 工程科学版, 2010, 42(2): 145-149. (Ding Xuefeng, Hu Yong, Zhao Wen, et al. A Study on the Characters of the Public Opinion Leader in Web BBS [J]. Journal of Sichuan University: Engineering Science Edition, 2010, 42(2): 145-149.)
[16] Hegselmann R, Krause U. Opinion Dynamics and Bounded Confidence Models, Analysis, and Simulation [J]. Journal of Artificial Societies and Social Simulation, 2002, 5(3): Article No. 2.
[17] 胡艳丽. 在线社会网络中的舆论演化关键技术研究[D]. 长沙: 国防科学技术大学, 2011. (Hu Yanli. Research on Key Technologies of Public Opinion Evolution in Online Social Networks [D]. Changsha: National University of Defense Technology, 2011.)
[18] Huang J, Cheng X Q, Shen H W, et al. Exploring Social Influence via Posterior Effect of Word-of-Mouth Recommendations [C]. In: Proceedings of the 5th ACM International Conference on Web Search and Data Mining. ACM, 2012: 573-582.
[19] 王辉, 韩江洪, 邓林, 等. 基于移动社交网络的谣言传播动力学研究[J]. 物理学报, 2013, 62(11): 96-107. (Wang Hui, Han Jianghong, Deng Lin, et al. Dynamics of Rumor Spreading in Mobile Social Networks [J]. Acta Physica Sinica, 2013, 62(11): 96-107.)
[20] Martins A C R, Galam S. Building up of Individual Inflexibility in Opinion Dynamics [J]. Physical Review E, 2013, 87(4): Article No. 042807.

[1] 曾庆田,胡晓慧,李超. 融合主题词嵌入和网络结构分析的主题关键词提取方法 *[J]. 数据分析与知识发现, 2019, 3(7): 52-60.
[2] 夏立新,曾杰妍,毕崇武,叶光辉. 基于LDA主题模型的用户兴趣层级演化研究 *[J]. 数据分析与知识发现, 2019, 3(7): 1-13.
[3] 余昕聪, 李红莲, 吕学强. 本体上下位关系在招生问答机器人中的应用研究[J]. 现代图书情报技术, 2015, 31(12): 65-71.
[4] 王政军, 俞小怡, 金玉玲. 利用旁路监听技术约束数字资源过量下载[J]. 现代图书情报技术, 2015, 31(12): 95-100.
[5] 刘占兵, 肖诗斌. 基于用户兴趣模糊聚类的协同过滤算法[J]. 现代图书情报技术, 2015, 31(11): 12-17.
[6] 伍万坤, 吴清烈, 顾锦江. 基于EM-LDA综合模型的电商微博热点话题发现[J]. 现代图书情报技术, 2015, 31(11): 33-40.
[7] 强韶华, 吴鹏. 地域性差异视角下的网站分类用户心智模型空间性研究[J]. 现代图书情报技术, 2015, 31(11): 68-74.
[8] 秦学东. 基于Drupal的KVM私有云管理系统解决方案[J]. 现代图书情报技术, 2015, 31(11): 91-95.
[9] 吴江, 张劲帆. 社会网络三元结构中关注影响力研究——以学生关系网络为例[J]. 现代图书情报技术, 2015, 31(10): 72-80.
[10] 姜春涛. 自动标注中文专利的引文信息[J]. 现代图书情报技术, 2015, 31(10): 81-87.
[11] 王颖, 张智雄, 李传席, 刘毅, 汤怡洁, 周子健, 钱力, 付鸿鹄. 科技知识组织体系开放引擎系统的设计与实现[J]. 现代图书情报技术, 2015, 31(10): 95-101.
[12] 桂思思, 陆伟, 黄诗豪, 周鹏程. 融合主题模型及多时间节点函数的用户兴趣预测研究[J]. 现代图书情报技术, 2015, 31(9): 9-16.
[13] 秦晓慧, 乐小虬. 面向单篇文献引文网络的主题来源与走向追踪[J]. 现代图书情报技术, 2015, 31(9): 52-59.
[14] 邓启平, 王小梅. 利用LeaderRank识别有影响力的作者[J]. 现代图书情报技术, 2015, 31(9): 60-67.
[15] 郑海山. 图书馆数据中心基础架构部署自动化系统[J]. 现代图书情报技术, 2015, 31(9): 97-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn