Please wait a minute...
Advanced Search
现代图书情报技术  2016, Vol. 32 Issue (1): 32-39    DOI: 10.11925/infotech.1003-3513.2016.01.06
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
结合深度置信网络和模糊集的虚假交易识别研究
张李义,刘畅()
武汉大学信息管理学院 武汉 430072
Combine Deep Belief Networks and Fuzzy Set for Recognition of Fraud Transaction
Liyi Zhang,Chang Liu()
School of Information Management, Wuhan University, Wuhan 430072, China
全文: PDF(647 KB)   HTML ( 58
输出: BibTeX | EndNote (RIS)      
摘要 【目的】解决电子商务平台中存在的虚假交易问题。【方法】依据消费者历史购买和评论行为数据, 提出一种结合深度置信网络和模糊集的虚假交易识别方法, 通过识别虚假交易的用户(刷客)进行虚假交易的识别。【结果】识别准确率达到89%, 与浅层机器学习模型试验结果进行对比, 其综合性能有明显提升。【局限】相对于淘宝存在的海量刷客, 实验数据较少。仅以淘宝数据作为验证数据, 未涉及其他电子商务平台。【结论】本方法能够较好地识别刷客, 减少电子商务中的虚假交易问题。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张李义
刘畅
关键词 虚假交易刷客识别商品评论深度学习模糊集    
Abstract

[Objective] To solve the problem of fraud transaction in e-commerce platform. [Methods] This paper proposes a method that combine Deep Belief Networks and fuzzy set based on consumers’ purchase history and reviews. Through recognizing the users in fraud transactions—cheaters to recognize the fraud transactions. [Results] Tested by experiments using the data crawled from Taobao.com, the accuracy can be achieved 89%. Compared with the shallow machine learning model, the comprehensive performance improves significantly. [Limitations] In contrast with the huge normal users and the users in fraud transactions, the experimental data in the paper is relatively small. And the test data only from Taobao.com, lack of the data from the other e-commerce platform to be validated. [Conclusions] The users in fraud transactions can be identified by the method, and the fraud transaction in e-commerce can be reduced.

Key wordsFraud transaction    Cheater recognition    Product reviews    Deep learning    Fuzzy set
收稿日期: 2015-06-26     
引用本文:   
张李义,刘畅. 结合深度置信网络和模糊集的虚假交易识别研究[J]. 现代图书情报技术, 2016, 32(1): 32-39.
Liyi Zhang,Chang Liu. Combine Deep Belief Networks and Fuzzy Set for Recognition of Fraud Transaction. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2016.01.06.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2016.01.06
[1] 中国电子商务研究中心. 2014年度中国电子商务市场数据监测报告[R/OL]. [2015-04-08]. .
[1] (China E-Business Research Center. The 2014 Report of China E-Business Market Data Monitoring [R/OL]. [2015-04-08].
[2] “2014 年最成功电子商务网站”提名: 淘宝网[EB/OL]. [2014-12-05]. .
[2] (Taobao.com is Nominated for “The Most Successful Electronic Commerce Website in 2014” [EB/OL]. [2014-12- 05].
[3] Jindal N, Liu B.Opinion Spam and Analysis [C]. In: Proceedings of the 2008 International Conference on Web Search and Web Data Mining (WSDM). 2008.
[4] Jindal N, Liu B, Lim E P.Finding Unusual Review Patterns Using Unexpected Rules [C]. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management (CIKM). 2010:1549-1552.
[5] Ott M, Choi Y, Cardie C, et al.Finding Deceptive Opinion Spam by Any Stretch of the Imagination [C]. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies. 2011: 309-319.
[6] 任亚峰, 尹兰, 姬东鸿. 基于语言结构和情感极性的虚假评论识别[J]. 计算机科学与探索, 2014, 8(3): 313-320.
[6] (Ren Yafeng, Yin Lan, Ji Donghong.Deceptive Reviews Detection Based on Language Structure and Sentiment Polarity[J]. Journal of Frontiers of Computer Science & Technology, 2014, 8(3): 313-320.)
[7] Feng S, Banerjee R, Choi Y.Syntactic Stylometry for Deception Detection [C]. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers. 2012: 171-175.
[8] Fei G, Mukherjee A, Liu B, et al.Exploiting Burstiness in Reviews for Review Spammer Detection [C]. In: Proceedings of the 7th International AAAI Conference on Weblogs and Social Media. 2013, 13: 175-184.
[9] Lim E P, Nguyen V A, Jindal N, et al.Detecting Product Review Spammers Using Rating Behaviors [C]. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management. ACM, 2010: 939-948.
[10] Jiang B, Cao R H, Chen B.Detecting Product Review Spammers Using Activity Model [C]. In: Proceedings of the 2013 International Conference on Advanced Computer Science and Electronics Information (ICACSEI 2013). Atlantis Press, 2013:650-653.
[11] 余凯, 贾磊, 陈雨强, 等. 深度学习的昨天, 今天和明天[J]. 计算机研究与发展, 2015, 50(9): 1799-1804.
[11] (Yu Kai, Jia Lei, Chen Yuqiang, et al.Deep Learning: Yesterday, Today, and Tomorrow[J]. Journal of Computer Research and Development, 2015, 50(9): 1799-1804.)
[12] 孙志军, 薛磊, 许阳明, 等. 深度学习研究综述[J]. 计算机应用研究, 2012, 29(8): 2806-2810.
[12] (Sun Zhijun, Xue Lei, Xu Yangming, et al.Overview of Deep Learning[J]. Application Research of Computers, 2012, 29(8): 2806-2810.)
[13] Dahl G E, Yu D, Deng L, et al.Context-Dependent Pre-trained Deep Neural Networks for Large-Vocabulary Speech Recognition[J]. IEEE Transactions on Audio, Speech, and Language Processing, 2012, 20(1): 30-42.
[14] Collobert R, Weston J.A Unified Architecture for Natural Language Processing: Deep Neural Networks with Multitask Learning [C]. In: Proceedings of the 25th International Conference on Machine Learning. ACM, 2008: 160-167.
[15] Krizhevsky A, Sutskever I, Hinton G E.Imagenet Classification with Deep Convolutional Neural Networks [C]. In: Proceedings of the 26th Annual Conference on Neural Information Processing Systems. 2012: 1097-1105.
[16] Hinton G E, Osindero S, Teh Y W.A Fast Learning Algorithm for Deep Belief Nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
[17] 李葆青. 基于卷积神经网络的模式分类器[J]. 大连大学学报, 2003, 24(2):19-23.
[17] (Li Baoqing.Building Pattern Classifiers with Convolutional Neural Networks[J]. Journal of Dalian University, 2003, 24(2): 19-23.)
[18] Zeki S.Splendors and Miseries of the Brain: Love, Creativity, and the Quest for Human Happiness[M]. The 2nd Edition. John Wiley & Sons, 2011.
[19] Mendel J M.On a Novel Way of Processing Data that Uses Fuzzy Sets for Later Use in Rule-based Regression and Pattern Classification[J]. International Journal of Fuzzy Logic and Intelligent Systems, 2014, 14(1): 1-7.
[20] Simpson P K.Fuzzy Min-Max Neural Networks. I. Classification[J]. IEEE Transactions on Neural Networks, 1992, 3(5): 776-786.
[21] Fu G, Wang X.Chinese Sentence-level Sentiment Classification Based on Fuzzy Sets [C]. In: Proceedings of the 23rd International Conference on Computational Linguistics: Posters. Association for Computational Linguistics, 2010: 312-319.
[22] Whitrow C, Hand D J, Juszczak P, et al.Transaction Aggregation as a Strategy for Credit Card Fraud Detection[J]. Data Mining and Knowledge Discovery, 2009, 18(1): 30-55.
[23] Leng B, Zhang X, Yao M, et al.A 3D Model Recognition Mechanism Based on Deep Boltzmann Machines[J]. Neurocomputing, 2015, 151: 593-602.
[24] Rutkowska P D.Neuro-fuzzy Architectures and Hybrid Learning[M]. Physica-Verlag HD, 2012.
[25] Zimmermann H J.Fuzzy Set Theory—And Its Applications[M]. Springer Netherlands, 2001.
[26] Wang X Y, Yang H Y, Li D M.A New Content-based Image Retrieval Technique Using Color and Texture Information[J]. Computers & Electrical Engineering, 2013, 39(3): 746-761.
[1] 张梦吉,杜婉钰,郑楠. 引入新闻短文本的个股走势预测模型[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
[2] 裴晶晶,乐小虬. 篇章级并列关系文本块识别方法研究[J]. 数据分析与知识发现, 2019, 3(5): 51-56.
[3] 余丽,钱力,付常雷,赵华茗. 基于深度学习的文本中细粒度知识元抽取方法研究*[J]. 数据分析与知识发现, 2019, 3(1): 38-45.
[4] 付常雷,钱力,张华平,赵华茗,谢靖. 基于深度学习的创新主题智能挖掘算法研究*[J]. 数据分析与知识发现, 2019, 3(1): 46-54.
[5] 刘丽娜,齐佳音,张镇平,曾丹. 品牌对商品在线销量的影响*——基于海量商品评论的在线声誉和品牌知名度的调节作用研究[J]. 数据分析与知识发现, 2018, 2(9): 10-21.
[6] 余本功,张培行,许庆堂. 基于F-BiGRU情感分析的产品选择方法*[J]. 数据分析与知识发现, 2018, 2(9): 22-30.
[7] 陆伟,罗梦奇,丁恒,李信. 深度学习图像标注与用户标注比较研究*[J]. 数据分析与知识发现, 2018, 2(5): 1-10.
[8] 冯国明,张晓冬,刘素辉. 基于CapsNet的中文文本分类研究*[J]. 数据分析与知识发现, 2018, 2(12): 68-76.
[9] 肖延辉,王欣,冯文刚,田华伟,吴绍忠,李丽华. 基于长短记忆型卷积神经网络的犯罪地理位置预测方法*[J]. 数据分析与知识发现, 2018, 2(10): 15-20.
[10] 冯文刚,黄静. 基于深度学习的民航安检和航班预警研究*[J]. 数据分析与知识发现, 2018, 2(10): 46-53.
[11] 胡家珩,岑咏华,吴承尧. 基于深度学习的领域情感词典自动构建*——以金融领域为例[J]. 数据分析与知识发现, 2018, 2(10): 95-102.
[12] 邓三鸿,傅余洋子,王昊. 基于LSTM模型的中文图书多标签分类研究*[J]. 数据分析与知识发现, 2017, 1(7): 52-60.
[13] 王忠群,吴东胜,蒋胜,皇苏斌. 一种基于主流特征观点对的评论可信性排序研究*[J]. 数据分析与知识发现, 2017, 1(10): 32-42.
[14] 朱丹浩, 杨蕾, 王东波. 基于深度学习的中文机构名识别研究*——一种汉字级别的循环神经网络方法[J]. 数据分析与知识发现, 2016, 32(12): 36-43.
[15] 王忠群, 皇苏斌, 修宇, 张义. 基于领域专家和商品特征概念树的在线商品评论深刻性度量[J]. 现代图书情报技术, 2015, 31(9): 17-25.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn