Please wait a minute...
Advanced Search
现代图书情报技术  2016, Vol. 32 Issue (2): 83-89    DOI: 10.11925/infotech.1003-3513.2016.02.11
  应用论文 本期目录 | 过刊浏览 | 高级检索 |
基于电子病历利用支持向量机构建疾病预测模型*——以重度急性胰腺炎早期预警为例
张晔1,张晗1,尹玢璨1,赵玉虹2()
1中国医科大学医学信息学院 沈阳 110122
2中国医科大学附属盛京医院 沈阳 110004
Building Disease Prediction Model Using Support Vector Machine ——Case Study of Severe Acute Pancreatitis
Zhang Ye1,Zhang Han1,Yin Bincan1,Zhao Yuhong2()
1Department of Medical Informatics, China Medical University, Shenyang 110122, China
2Shengjing Hospital of China Medical University, Shenyang 110004, China
全文: PDF(446 KB)   HTML ( 75
输出: BibTeX | EndNote (RIS)      
摘要 

目的】为构建疾病预测模型, 以重度急性胰腺炎早期预警为例, 提出一种基于支持向量机的疾病预测模型构建方法。【方法】基于支持向量机LIBSVM3.11, 采用优化后的径向基核函数产生的分类器, 同时结合统计学单因素及多因素Logistic回归分析方法, 进行特征变量选取, 提出一种简单易行的重度急性胰腺炎早期预警模型。【结果】所构建重度急性胰腺炎预警模型准确率达70.37%。最终纳入模型变量包括白细胞计数、血清钙离子、血清脂肪酶、收缩压、舒张压及胸腔积液。【局限】样本量有限, 主要采用支持向量机构建疾病预测模型, 未来可建立系统, 突出临床应用价值。【结论】支持向量机可构建疾病预测的最优模型, 进一步建立系统, 辅助临床决策。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张晔
张晗
尹玢璨
赵玉虹
关键词 支持向量机重度急性胰腺炎预警临床决策    
Abstract

[Objective] This study developed a disease prediction model based on the support vector machine, using electronic medical records of the severe acute pancreatitis patients. [Methods] We first adjusted the kernel type and parameter values of the support vector machine method to get an optimized prediction model. Then, we combined it with univariable and multivariable logistic regression analysis methods to select features’ variable. Finally, we proposed a simplified early warning model for the severe acute pancreatitis. [Results] The new model’s prediction accuracy rate is 70.37%. Variables used by this model include: white blood cell count, serum calcium, serum lipase, systolic blood pressure, diastolic blood pressure and pleural effusion. [Limitations] Because of the small sample size, we only used this support vector machine method to develop the new disease prediction model. In the future, we will try to establish a larger examination system for the clinical trial. [Conclusions] Support vector machine can help us develop an optimal disease prediction model. A new system based on this model could support our clinical decision makings.

Key wordsSupport Vector Machine    Severe acute pancreatitis    Early warning    Clinical decision
收稿日期: 2015-09-21     
基金资助:*本文系教育部人文社会科学研究青年基金项目“基于语义述谓网络属性的多文档自动摘要: 以生物医学为例”(项目编号:13YJC870030)的研究成果之一
引用本文:   
张晔,张晗,尹玢璨,赵玉虹. 基于电子病历利用支持向量机构建疾病预测模型*——以重度急性胰腺炎早期预警为例[J]. 现代图书情报技术, 2016, 32(2): 83-89.
Zhang Ye,Zhang Han,Yin Bincan,Zhao Yuhong. Building Disease Prediction Model Using Support Vector Machine ——Case Study of Severe Acute Pancreatitis. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2016.02.11.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2016.02.11
[1] 雷健波. 电子病历的核心价值与临床决策支持[J]. 中国数字医学, 2008, 3(3): 26-30.
[1] (Lei Jianbo.Clinical Decision Support and the Core Value of Electronic Medical Record[J]. China Digital Medicine, 2008, 3(3): 26-30.)
[2] Byrd R J, Steinhubl S R, Sun J, et al.Automatic Identification of Heart Failure Diagnostic Criteria, Using Text Analysis of Clinical Notes from Electronic Health Records[J]. International Journal of Medical Informatics, 2014, 83(12): 983-992.
[3] Ye J, Farnum M, Yang E, et al.Sparse Learning and Stability Selection for Predicting MCI to AD Conversion Using Baseline ADNI Data[J]. BMC Neurology, 2012. DOI: 10.1186/1471-2377-12-46.
[4] Alvarez C A, Clark C A, Zhang S, et al.Predicting out of Intensive Care Unit Cardiopulmonary Arrest or Death Using Electronic Medical Record Data[J]. BMC Medical Informatics and Decision Making, 2013. DOI: 10.1186/1472- 6947-13-128.
[5] Matheny M E, Fitzhenry F, Speroff T, et al.Detection of Infectious Symptoms from VA Emergency Department and Primary Care Clinical Documentation[J]. International Journal of Medical Informatics, 2012, 81(3): 143-156.
[6] Kim S Y, Moon S K, Jung D C, et al.Pre-Operative Prediction of Advanced Prostatic Cancer Using Clinical Decision Support Systems: Accuracy Comparison between Support Vector Machine and Artificial Neural Network[J]. Korean Journal of Radiology, 2011, 12(5): 588-594.
[7] Kim W, Kim K S, Lee J E, et al.Development of Novel Breast Cancer Recurrence Prediction Model Using Support Vector Machine[J]. Journal of Breast Cancer, 2012, 15(2): 230-238.
[8] 吕奕, 王清. 一种基于概率校正和集成学习的肠癌肝转移预测模型[J]. 计算机应用与软件, 2011, 28(9): 48-51.
[8] (Lv Yi, Wang Qing.A Probability Calibration and Ensemble Learning Based Colorectal Cancer Liver Metastasis Prediction Model[J]. Computer Applications and Software, 2011, 28(9): 48-51.)
[9] 王星, 等. 大数据分析: 方法与应用[M]. 北京: 清华大学出版社, 2013: 68-90.
[9] (Wang Xing, et al.Big Data Analysis: Methods and Applications[M]. Beijing: Tsinghua University Press, 2013: 68-90.)
[10] 陈永义, 熊秋芬. 支持向量机方法应用教程[M]. 北京: 气象出版社, 2011: 6-10.
[10] (Chen Yongyi, Xiong Qiufen.Application of Support Vector Machines Tutorial [M]. Beijing: China Meteorological Press, 2011: 6-10.)
[11] ICTCLAS 2014 [EB/OL]. [2015-03-25]. .
[12] LIBSVM—A Library for Support Vector Machines [EB/OL]. [2015-03-25]. .
[13] Up To Data [EB/OL]. [2015-03-25]. .
[14] Banks P A, Bollen T L, Dervenis C, et al.Classification of Acute Pancreatitis--2012: Revision of the Atlanta Classification and Definitions by International Consensus[J]. Gut, 2013, 62(1): 102-111.
[15] 袁梅宇. 数据挖掘与机器学习——WEKA应用技术与实践[M]. 北京: 清华大学出版社, 2014: 2.
[15] (Yuan Meiyu.Data Mining and Machine Learning——WEKA Application Technology and Practice [M]. Beijing: Tsinghua University Press, 2014: 2.)
[16] 刘勘, 朱怀萍, 刘秀芹. 基于支持向量机的网络伪舆情识别研究[J]. 现代图书情报技术, 2013(11): 75-80.
[16] (Liu Kan, Zhu Huaiping, Liu Xiuqin.Detection of Internet Deceptive Opinion Based on SVM[J]. New Technology of Library and Information Service, 2013(11): 75-80.)
[1] 曾庆田,戴明弟,李超,段华,赵中英. 轨迹数据融合用户表示方法的重要位置发现*[J]. 数据分析与知识发现, 2019, 3(6): 75-82.
[2] 周成,魏红芹. 专利价值评估与分类研究*——基于自组织映射支持向量机[J]. 数据分析与知识发现, 2019, 3(5): 117-124.
[3] 侯君,刘魁,李千目. 基于ESSVM的分类推荐*[J]. 数据分析与知识发现, 2018, 2(3): 9-21.
[4] 冯文刚,黄静. 基于深度学习的民航安检和航班预警研究*[J]. 数据分析与知识发现, 2018, 2(10): 46-53.
[5] 黄孝喜,李晗雨,王荣波,王小华,谌志群. 基于卷积神经网络与SVM分类器的隐喻识别*[J]. 数据分析与知识发现, 2018, 2(10): 77-83.
[6] 张志强,范少萍,陈秀娟. 面向精准医学知识发现的生物医学信息学发展*[J]. 数据分析与知识发现, 2018, 2(1): 1-8.
[7] 曾金,陆伟,丁恒,陈海华. 基于图像语义的用户兴趣建模*[J]. 数据分析与知识发现, 2017, 1(4): 76-83.
[8] 田世海,吕德丽. 改进潜在语义分析和支持向量机算法用于突发安全事件舆情预警*[J]. 数据分析与知识发现, 2017, 1(2): 11-18.
[9] 杨爽,陈芬. 基于SVM多特征融合的微博情感多级分类研究*[J]. 数据分析与知识发现, 2017, 1(2): 73-79.
[10] 刘红光,马双刚,刘桂锋. 基于降噪自动编码器的中文新闻文本分类方法研究*[J]. 现代图书情报技术, 2016, 32(6): 12-19.
[11] 李国垒, 陈先来, 夏冬, 杨荣. 面向临床决策的电子病历文本潜在语义分析*[J]. 数据分析与知识发现, 2016, 32(3): 50-57.
[12] 黄炜,余辉,李岳峰. 国内网络反恐研究的现状、问题和展望*[J]. 现代图书情报技术, 2016, 32(11): 1-10.
[13] 王丽,丁迎杰,吴鸣. 专题专利预警平台建设方案研究与实践*[J]. 现代图书情报技术, 2016, 32(10): 98-104.
[14] 张策,都云程,梁然. 采用URL特征的Hub网页识别方法研究*[J]. 现代图书情报技术, 2016, 32(1): 24-31.
[15] 何跃, 宋灵犀, 齐丽云. 负面事件中的品牌网络口碑溢出效应研究——以“圆通夺命快递”事件为例[J]. 现代图书情报技术, 2015, 31(10): 58-64.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn