Please wait a minute...
Advanced Search
现代图书情报技术  2016, Vol. 32 Issue (4): 31-39    DOI: 10.11925/infotech.1003-3513.2016.04.04
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于微博的电影首映周票房预测建模*
王晓耘,袁媛(),史玲玲
杭州电子科技大学管理学院 杭州 310012
Predicting Opening Weekend Box Office Prediction Based on Microblog
Wang Xiaoyun,Yuan Yuan(),Shi Lingling
Management School, Hangzhou Dianzi University, Hangzhou 310012, China
全文: PDF(665 KB)   HTML ( 58
输出: BibTeX | EndNote (RIS)      
摘要 

目的】解决现有的票房预测模型由于数据受限等因素导致的无法实现在影片上映前进行票房预测这一问题。【方法】在获取微博评论的基础上, 使用SVM识别出消费者的显式消费意图, 即强正面评论; 对传统的分类准则进行修正, 构建基于HowNet的中文微博情感词典, 进而定义一个新的用户影响力特征; 使用BP神经网络进行票房预测。【结果】实验结果表明, 本文建立的模型能够较为准确地对电影首映周票房进行预测。【局限】由于语料不充分, 本文构建的中文微博情感词典, 可能会无法在所有的电影微博评论中表现出较好的分类效果; 此外也没有建立一个能够在电影上映周期内动态预测票房的票房预测模型。【结论】该模型能够有效地进行首映周票房预测, 具有现实的可行意义。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王晓耘
袁媛
史玲玲
关键词 情感词典情感分类首映周票房预测神经网络    
Abstract

[Objective] This study aims to solve the problems of the existing pre-release box office prediction models due to data constraints and other factors. [Methods] We first retrieved microblog comments, and then used SVM to identify explicit consumer intention, namely strong positive comments. Second, we modified the traditional sentiment classification schemes to build a Chinese microblog sentiment dictionary based on HowNet. Finally, we defined a new user influence feature and used the BP neural network to predict box office. [Results] The proposed model could forecast the opening box office more accuately. [Limitations] Due to inadequate corpus, the sentiment dictionary may not work well for all microblog movie comments. A dynamic forecasting model was not established between the pre-release and post-release period. [Conclusions] The proposed model can effectively predict opening box office.

Key wordsSentiment dictionary    Sentiment classification    Opening weekend box office prediction    Neural network
收稿日期: 2015-09-11     
基金资助:*本文系“管理科学与工程”省高校人文社科研究基地项目“基于用户节点属性的微博突发话题传播预测算法”(项目编号: GK140203204004/02)和2015年杭州电子科技大学研究生优秀学位论文培育基金项目“基于社交媒体的体验性商品销量预测—以票房预测为例”(项目编号: ZX150605304023)的研究成果之一
引用本文:   
王晓耘,袁媛,史玲玲. 基于微博的电影首映周票房预测建模*[J]. 现代图书情报技术, 2016, 32(4): 31-39.
Wang Xiaoyun,Yuan Yuan,Shi Lingling. Predicting Opening Weekend Box Office Prediction Based on Microblog. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2016.04.04.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2016.04.04
[1] 尹裴, 王洪伟, 郭恺强. 中文产品评论的“特征观点对”识别: 基于领域本体的建模方法[J].系统工程, 2013, 31(1): 68-77.
[1] (Yin Pei, Wang Hongwei, Guo Kaiqiang.Feature- opinion Pair Identification in Chinese Online Reviews Based on Domain Ontology Modeling Method[J]. Systems Engineering, 2013, 31(1): 68-77.)
[2] 张闯, 姜杨, 吴铭, 等. 基于社会化媒体节点属性的信息预测[J]. 北京邮电大学学报, 2012, 35(4): 24-27.
[2] (Zhang Chuang, Jiang Yang, Wu Ming, et al.Information Predictions Based on Node Attributes of Social Media[J]. Journal of Beijing University of Posts and Telecommunications, 2012, 35(4): 24-27.)
[3] Liu Y, Huang X, An A, et al.ARSA: A Sentiment-aware Model for Predicting Sales Performance Using Blogs [C]. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. 2007: 607-614.
[4] Neelamegham R, Chintagunta P.A Bayesian Model to Forecast New Product Performance in Domestic and International Markets[J]. Marketing Science, 1999, 18(2): 115-136.
[5] Elberse A, Eliashberg J.Demand and Supply Dynamics for Sequentially Released Products in International Markets: The Case of Motion Pictures[J]. Marketing Science, 2003, 22(3): 329-354.
[6] Liu Y.Word of Mouth for Movies: Its Dynamics and Impact on Box Office Revenue[J]. Journal of Marketing, 2006, 70(3): 74-89.
[7] Sawhney M S, Eliashberg J.A Parsimonious Model for Forecasting Gross Box-office Revenues of Motion Pictures[J]. Marketing Science, 1996, 15(2): 113-131.
[8] Eliashberg J, Shugan S M.Film Critics: Influencers or Predictors?[J]. Journal of Marketing, 1997, 61(2): 68-78.
[9] Krider R E, Weinberg C B.Competitive Dynamics and the Introduction of New Products: The Motion Picture Timing Game[J]. Journal of Marketing Research, 1998, 35(1): 1-15.
[10] Asur S, Huberman B A.Predicting the Future with Social Media [C]. In: Proceedings of the 2010 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology. IEEE Computer Society, 2010: 492-499.
[11] Du J, Xu H, Huang X.Box Office Prediction Based on Microblog[J]. Expert Systems with Applications, 2014, 41(4): 1680-1689.
[12] Eliashberg J, Jonker J J, Sawhney M S, et al.MOVIEMOD: An Implementable Decision-Support System for Prerelease Market Evaluation of Motion Pictures[J]. Marketing Science, 2015, 19(3): 226-243.
[13] Shugan S M, Swait J.Enabling Movie Design and Cumulative Box Office Predictions Using Historical Data and Consumer Intent-to-View [R]. University of Florida, 2000.
[14] 陈晓东. 基于情感词典的中文微博情感倾向分析研究[D]. 武汉: 华中科技大学, 2012.
[14] (Chen Xiaodong.Research on Sentiment Dictionary Based Emotional Tendency Analysis of Chinese Microblog [D]. Wuhan: Huazhong University of Science & Tchnology, 2012.)
[15] 王炼, 贾建民. 基于网络搜索的票房预测模型——来自中国电影市场的证据[J]. 系统工程理论与实践, 2014, 34(12): 3079-3090.
[15] (Wang Lian, Jia Jianmin.Forecasting Box Office Performance Based on Online Search:Evidence from Chinese Movie Industry[J]. Systems Engineering-Theory & Practice, 2014, 34(12): 3079-3090.)
[16] Fu B, Liu T.Weakly-supervised Consumption Intent Detection in Microblogs[J]. Journal of Computational Information Systems, 2013, 6(9): 2423-2431.
[17] 陈浩辰. 基于微博的消费意图挖掘[D]. 哈尔滨: 哈尔滨工业大学, 2014.
[17] (Chen Haochen.Consumption Intention Mining Based on Microblog [D]. Harbin: Harbin Institute of Technology, 2014.)
[18] Vapnik V N, Vapnik V.Statistical Learning Theory[M]. New York: Wiley, 1998.
[19] 杜伟夫, 谭松波, 云晓春, 等. 一种新的情感词汇语义倾向计算方法[J]. 计算机研究与发展, 2009, 46(10): 1713-1720.
[19] (Du Weifu, Tan Songbo, Yun Xiaochun, et al.A New Method to Compute Semantic Orientation[J]. Journal of Computer Research and Development, 2009, 46(10): 1713-1720.)
[20] 郭叶. 中文句子情感倾向分析[D]. 北京: 北京邮电大学, 2010.
[20] (Guo Ye.Sentiment Orientation Analysis of Chinese Sentences [D]. Beijing: Beijing University of Posts and Telecommunications, 2010.)
[21] 王铮, 许敏. 电影票房的影响因素分析——基于Logit 模型的研究[J]. 经济问题探索, 2013 (11): 96-102.
[21] (Wang Zheng, Xu Min.Analysis of the Influence Factors of Movie Box Office—Based on Logit Model[J]. Inquiry into Economic Issues, 2013 (11): 96-102.)
[22] 游建平. 基于语义情感空间模型的微博情感倾向性研究[D]. 广州: 暨南大学, 2012.
[22] (You Jianping.Micro-Blog Sentiment Analysis Based on Semantic Sentiment Space Model [D]. Guangzhou: Jinan University, 2012.)
[1] 何振宇,董祥祥,朱庆华. 基于用户使用行为视角的百度百科词条分类研究*[J]. 数据分析与知识发现, 2019, 3(6): 117-122.
[2] 刘勘,陈露. 面向医疗分诊的深度神经网络学习*[J]. 数据分析与知识发现, 2019, 3(6): 99-108.
[3] 陈万成,戴浩然,金映含. 基于数据挖掘方法的HEDONIC房屋价格评估模型——以美国城市西雅图为例[J]. 数据分析与知识发现, 2019, 3(5): 19-26.
[4] 张庆庆,贺兴时,王慧敏,蒙胜军. 基于深度信念网络的文本情感分类研究*[J]. 数据分析与知识发现, 2019, 3(4): 71-79.
[5] 蒋翠清,郭轶博,刘尧. 基于中文社交媒体文本的领域情感词典构建方法研究*[J]. 数据分析与知识发现, 2019, 3(2): 98-107.
[6] 李慧,柴亚青. 基于卷积神经网络的细粒度情感分析方法*[J]. 数据分析与知识发现, 2019, 3(1): 95-103.
[7] 徐月梅,吕思凝,蔡连侨,张小娅. 结合卷积神经网络和Topic2Vec的新闻主题演变分析*[J]. 数据分析与知识发现, 2018, 2(9): 31-41.
[8] 马晓宇,张晗,赵玉虹. 基于BRFSS数据库应用人工神经网络构建儿童哮喘预测模型*[J]. 数据分析与知识发现, 2018, 2(8): 10-15.
[9] 王树义,廖桦涛,吴查科. 基于情感分类的竞争企业新闻文本主题挖掘*[J]. 数据分析与知识发现, 2018, 2(3): 70-78.
[10] 孟虎,梁晓蓓,杨以雄,李敏. 大数据背景下基于LMBP算法的供应链绩效评价与优化*[J]. 数据分析与知识发现, 2018, 2(11): 37-45.
[11] 武玉英,孙平,何喜军,蒋国瑞. 新能源领域专利转让加权网络中主体间技术交易机会预测*[J]. 数据分析与知识发现, 2018, 2(11): 73-79.
[12] 肖延辉,王欣,冯文刚,田华伟,吴绍忠,李丽华. 基于长短记忆型卷积神经网络的犯罪地理位置预测方法*[J]. 数据分析与知识发现, 2018, 2(10): 15-20.
[13] 黄孝喜,李晗雨,王荣波,王小华,谌志群. 基于卷积神经网络与SVM分类器的隐喻识别*[J]. 数据分析与知识发现, 2018, 2(10): 77-83.
[14] 胡家珩,岑咏华,吴承尧. 基于深度学习的领域情感词典自动构建*——以金融领域为例[J]. 数据分析与知识发现, 2018, 2(10): 95-102.
[15] 首欢容,邓淑卿,徐健. 基于情感分析的网络谣言识别方法*[J]. 数据分析与知识发现, 2017, 1(7): 44-51.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn