Please wait a minute...
Advanced Search
现代图书情报技术  2016, Vol. 32 Issue (7-8): 101-109    DOI: 10.11925/infotech.1003-3513.2016.07.13
  本期目录 | 过刊浏览 | 高级检索 |
融合领域专家信任与相似度的协同过滤推荐算法研究*
谭学清,张磊,黄翠翠,罗琳()
武汉大学信息管理学院 武汉 430072
A Collaborative Filtering and Recommendation Algorithm Using Trust of Domain-Experts and Similarity
Tan Xueqing,Zhang Lei,Huang Cuicui,Luo Lin()
School of Information Management, Wuhan University, Wuhan 430072, China
全文: PDF(622 KB)   HTML ( 69
输出: BibTeX | EndNote (RIS)      
摘要 

目的】利用领域专家信任和相似度相结合的优势, 弥补传统协同过滤推荐算法在推荐准确度以及挖掘长尾商品方面存在的不足。【方法】选取MovieLens中稀疏度为0.9605的数据集, 由评分记录较多的1 102个用户对2 920部电影的评分记录构成, 利用分阶段实验法求得最优专家用户数量及推荐权重系数α值, 并结合对比分析法对算法的性能进行评测。【结果】实验结果表明, 本算法的推荐结果准确率和覆盖率均受到专家用户数量的影响, 且当推荐权重系数为0.6时推荐准确度明显优于传统算法, 同时专家用户比例由2%上升至20%时, 覆盖率上升了0.21, 说明算法在一定程度上显著提高了推荐系统挖掘长尾商品的能力。【局限】未考虑到不同领域类别之间可能存在的相关性。【结论】该算法能够有效地克服数据稀疏性和冷启动问题, 显著提高推荐系统的推荐质量和准确度。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谭学清
张磊
黄翠翠
罗琳
关键词 个性化推荐协同过滤领域专家相似度    
Abstract

[Objective] This paper tries to improve the performance of traditional collaborative filtering and recommendation algorithm. [Methods] We used the MovieLens dataset to evaluate the proposed algorithm. First, chose datasets with sparse degree of 0.9605, which included scoring records of 1,102 users for 2,920 movies. Second, identified the optimal number of expert users and recommended weight coefficient alpha value with series of experiments. Finally, evaluated the algorithm’s performance with comparative method. [Results] The precision of the algorithm were influenced by the expert users. When the recommended weight coefficient value was 0.6, the precision of the new algorithm was better than the traditional ones. Once the propotion of expert users increased from 2% to 20%, the coverage value increased by 0.21. Thus, the new algorithm could analyze the long tail goods more effectively. [Limitations] We did not take into account the possible correlation among different categories. [Conclusions] The proposed algorithm could effectively solve the data sparsity and cold start issues, which significantly improve the performance of the recommendation system.

Key wordsPersonalized recommendation    Collaborative filtering    Domain-Expert    Similarity
收稿日期: 2016-04-04     
基金资助:*本文系国家社会科学基金项目“数字图书馆标签系统的语义挖掘研究”(项目编号: 12CTQ003)的研究成果之一
引用本文:   
谭学清,张磊,黄翠翠,罗琳. 融合领域专家信任与相似度的协同过滤推荐算法研究*[J]. 现代图书情报技术, 2016, 32(7-8): 101-109.
Tan Xueqing,Zhang Lei,Huang Cuicui,Luo Lin. A Collaborative Filtering and Recommendation Algorithm Using Trust of Domain-Experts and Similarity. New Technology of Library and Information Service, DOI:10.11925/infotech.1003-3513.2016.07.13.
链接本文:  
http://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.1003-3513.2016.07.13
[1] J?sang A, Ismail R, Boyd C.A Survey of Trust and Reputation Systems for Online Service Provision[J]. Decision Support Systems, 2006, 43(2): 618-644.
[2] Zhang B, Huang Z, Yu J, et al.Trust Computation for Multiple Routes Recommendation in Social Network Sites[J]. Security & Communication Networks, 2005, 12(12): 159-174.
[3] 吴应良, 姚怀栋, 李成安. 一种引入间接信任关系的改进协同过滤推荐算法[J]. 现代图书情报技术, 2015(9): 38-45.
[3] (Wu Yingliang, Yao Huaidong, Li Cheng’an.An Improved Collaborative Filtering Recommendation Algorithm with Indirect Trust Relationship[J]. New Technology of Library and Information Service, 2015(9): 38-45.)
[4] Massa P, Avesani P.Trust-Aware Recommender Systems[C]. In: Proceedings of the 1st ACM Conference on Recommender Systems. 2007.
[5] Hwang C S, Chen Y P.Using Trust in Collaborative Filtering Recommendation [A]. // New Trends in Applied Artificial Intelligence[M]. Springer Berlin Heidelberg, 2007: 1052-1060.
[6] Moradi P, Ahmadian S.A Reliability-Based Recommendation Method to Improve Trust-Aware Recommender Systems[J]. Expert Systems with Applications, 2015, 42(21): 7386-7398.
[7] 俞琰, 邱广华. 融合社会网络的协同过滤推荐算法研究[J]. 现代图书情报技术, 2012(6): 54-59.
[7] (Yu Yan, Qiu Guanghua.Research on Collaborative Filtering Recommendation Algorithm by Fusing Social Network[J]. New Technology of Library and Information Service, 2012(6): 54-59. )
[8] 杜永萍, 黄亮, 何明. 融合信任计算的协同过滤推荐方法[J]. 模式识别与人工智能, 2014, 27(5): 417-425.
[8] (Du Yongping, Huang Liang, He Ming.Collaborative Filteration Recommendation Algorithm Based on Trust Computation[J]. Pattern Recognition and Artificial Intelligence, 2014, 27(5): 417-425.)
[9] Jamali M, Ester M.TrustWalker: A Random Walk Model for Combining Trust-Based and Item-Based Recommendation [C]. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2009: 397-406.
[10] Chen C C, Wan Y H, Chung M C, et al.An Effective Recommendation Method for Cold Start New Users Using Trust and Distrust Networks[J]. Information Sciences, 2013, 224(2): 19-36.
[11] Bedi P, Sharma R.Trust Based Recommender System Using Ant Colony for Trust Computation[J]. Expert Systems with Applications, 2012, 39(1): 1183-1190.
[12] Lai C H, Liu D R, Lin C S.Novel Personal and Group-Based Trust Models in Collaborative Filtering for Document Recommendation[J]. Information Sciences, 2013, 239(4): 31-49.
[13] 景民昌, 唐弟官, 于迎辉. 基于专家信任优先的协同过滤推荐算法[J]. 图书情报工作, 2012, 56(11): 105-108.
[13] (Jing Minchang, Tang Diguan, Yu Yinghui.A Recommending Method Based on Expert Prior Trust in Collaborative Filtering[J]. Library and Information Service, 2012, 56(11): 105-108.)
[14] Victor P, Cornelis C, De Cock M, et al.Key Figure Impact in Trust-enhanced Recommender Systems[J]. AI Communications, 2008, 21(2-3): 127-143.
[15] Billsus D, Pazzani M J.Learning Collaborative Information Filters [C] In: Proceedings of the 15th International Conference on Machine Learning. 1998.
[16] Rodgers J L, Nicewander W A.Thirteen Ways to Look at the Correlation Coefficient[J]. American Statistician, 1988, 42(1): 59-66.
[17] Breese J S, Heckerman D, Kadie C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering [C]. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. 2013: 43-52.
[18] Ahn H J.A New Similarity Measure for Collaborative Filtering to Alleviate the New User Cold-Starting Problem[J]. Information Sciences, 2008, 178(1): 37-51.
[19] Shardanand U, Maes P.Social Information Filtering: Algorithms for Automating “Word of Mouth” [C]. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 1995.
[20] Herlocker J L.Evaluating Collaborative Filtering Recommender Systems[J]. ACM Transactions on Information Systems, 2004, 22(1): 5-53.
[1] 关鹏,王曰芬,傅柱. 基于LDA的主题语义演化分析方法研究 * ——以锂离子电池领域为例[J]. 数据分析与知识发现, 2019, 3(7): 61-72.
[2] 张怡文,张臣坤,杨安桔,计成睿,岳丽华. 基于条件型游走的四部图推荐方法*[J]. 数据分析与知识发现, 2019, 3(4): 117-125.
[3] 张佩瑶,刘东苏. 基于词向量和BTM的短文本话题演化分析*[J]. 数据分析与知识发现, 2019, 3(3): 95-101.
[4] 叶佳鑫,熊回香. 基于标签的跨领域资源个性化推荐研究*[J]. 数据分析与知识发现, 2019, 3(2): 21-32.
[5] 吴丹,陆柳杏. 跨设备搜索中设备转移前后查询式语义变化研究*[J]. 数据分析与知识发现, 2018, 2(8): 69-78.
[6] 孙海霞,王蕾,吴英杰,华薇娜,李军莲. 科技文献数据库中机构名称匹配策略研究*[J]. 数据分析与知识发现, 2018, 2(8): 88-97.
[7] 李杰,杨芳,徐晨曦. 考虑时间动态性和序列模式的个性化推荐算法*[J]. 数据分析与知识发现, 2018, 2(7): 72-80.
[8] 王道平,蒋中杨,张博卿. 基于灰色关联分析和时间因素的协同过滤算法*[J]. 数据分析与知识发现, 2018, 2(6): 102-109.
[9] 李琳,李辉. 一种基于概念向量空间的文本相似度计算方法[J]. 数据分析与知识发现, 2018, 2(5): 48-58.
[10] 王永,王永东,郭慧芳,周玉敏. 一种基于离散增量的项目相似性度量方法*[J]. 数据分析与知识发现, 2018, 2(5): 70-76.
[11] 花凌锋,杨高明,王修君. 面向位置的多样性兴趣新闻推荐研究*[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[12] 刘俊婉,杨波,王菲菲. 基于引证行为与学术相似度的学者影响力领域排名方法研究*[J]. 数据分析与知识发现, 2018, 2(4): 59-70.
[13] 徐建民,许彩云. 基于文本和公式的科技文档相似度计算*[J]. 数据分析与知识发现, 2018, 2(10): 103-109.
[14] 侯银秀,李伟卿,王伟军,张婷婷. 基于用户偏好与商品属性情感匹配的图书个性化推荐研究*[J]. 数据分析与知识发现, 2017, 1(8): 9-17.
[15] 薛福亮,刘君玲. 基于用户间信任关系改进的协同过滤推荐方法*[J]. 数据分析与知识发现, 2017, 1(7): 90-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn